下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
考研数学高数复习无穷级数常考内容及题型考研数学高数复习无穷级数常考内容及题型1、考试内容几何级数与级数及其收敛性;常数项级数的收敛与发散的概念;(3)收敛级数的和的概念;(4)交错级数与莱布尼茨定理;(5)级数的基本性质与收敛的必要条件;正项级数收敛性的判别法;函数项级数的收敛域与和函数的概念;(8)任意项级数的绝对收敛与条件收敛;幕级数的和函数;简单幕级数的和函数的求法;幕级数在其收敛区间内的基本性质;幕级数及其收敛半径、收敛区间(指开区间)和收敛域;初等函数的幕级数展开式;狄利克雷(Dirichlet)定理;“无穷级数”考点和常考题型上的正弦级数和余弦级数。(其中14-17只要求数一考生掌握,数三考试不要求掌握)。函数的傅里叶(Fourier)系数与傅里叶级数;“无穷级数”考点和常考题型上的傅里叶级数;2、考试要求了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件;掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法;掌握几何级数与级数的收敛与发散的条件;掌握交错级数的莱布尼茨判别法;了解函数项级数的收敛域及和函数的概念;了解幕级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幕级数在收敛区间内的和函数,并会由此求出某些数项级数的和;理解幕级数收敛半径的概念、并掌握幕级数的收敛半径、收敛区间及收敛域的求法;了解函数展开为泰勒级数的充分必要条件;了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.(其中11只要求数一考生掌握,数二、数三考试不要求掌握)掌握“无穷级数”考点和常考题型的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幕级数;3、常考题型把函数展开成傅立叶级数、正弦级数、余弦级数;求幕级数的和函数;狄利克雷定理判定级数的敛散性;(5)把函数展开成幕级数;求幕级数的收敛域和收敛半径;特殊的常数项级数的求和。一、 重视计算计算,是命题专家这两年一直强调一个点,就是说考研数学考试的计算,不是简单的数字计算,是对概念和算理的一个考察,同学们计算上的共性,一个是计算能力弱,第二个是我们觉得计算没有找到好方法,以致于算得慢,做得烦。这一点需要大家注意。二、 三基本在2015年的真题中,大家可以看到考试中心比较强调基础的。在数一数三的题当中有一个公用大题十分是同济教材六版88页的定理的证明,这是比较基础的,直接考教材中定理。这个题的得分率,数一只有0.5,数三0.42,说明其实考的并不理想。所以现阶段同学们复习还要注重核心的,基础的内容。再比如说利用泰勒公式求极限,这一届命题组是很稳定的,每年必考的这种问题。那么即便是数三的同学也要注意,泰勒公式可能是了解的。但是这是求极限的一种核心的方法,这个题用泰勒公式做显然是简单的,2015年数一数三这个题也是利用泰勒公式,核心方法重点考察,重复考察,所以这一点。三、 注重本质,注意定理的适用条件强调数学考察三基,注重对概念本质的考察,考察大家对数学的理解和掌握,淡化对特殊的结题技巧的考察,往往注重定理的结题和应用,往往不看定理的前提,这是不注意的地方。比如说在一点存在导数,不能用罗贝塔法则,这个法则是在这一点的零域内,这需要辨析,这就可以拉开差距。四、 应用必考继续加强应用性的考察,应用性是数学学科的特点。解答数学应用题是分析问题和解决问题能力的高层次的反应,反应出考生的、创新意识和实践能力,所以实践中应该有所体现。2015年试卷中数二的物理应用得分率是0.319,数三一个经济应用,这个还是比较常见的,得分率只有0.488。所以可见同学们对应用的重视还是不够的。物理应用很多年没有出现了,考一下得分率比较低,所以数一数二的同学应该重视的是物理应用与几何应用。数三同学应该重视的是经济应用与几何应用,这一点希望大家要加强。五、 客观题的得分率低基本上每年阅卷都会发现,数三的填空题的得分率比大题还来得低,数一数二也是如此。所以同学们,客观题,小题的得分率要重视,毕竟这个题要么四分,要么零分,三个小题相当于一个大题。客观题做的时候也要注意是有特殊的方法的。比如说抽象的问题,一般的问题我们可以找特例处理。六、 全面复习,杜绝应试的倾向从大家的作答题情况来看,常见试题和知识点的得分情况比较好;对大纲中要求的,以前考试中出现频率比较低的试题和内容的得分情况不好,说明同学们有一种急功近利应试想法。这一点希望考高分的同学要注意了,是要全面复习。比如说我这里给大家看几个例子。2013年数一的时候考了一个空间解析几何的大题,这个题得分率希望是0.289,是当年得分率最低几个题之一,因为前面的卷子中空间解析几何都不出大题的。考纲中仔细看一下,同学们现在要回归考纲。一、 注意基本概念、基本方法和基本定理的复习掌握二、 加强练习,充分利用历年真题,重视总结、归纳解题思路、方法和技巧数学考试的所有任务就是解题,而基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。试题千变万化,但其知识结构却基本相同,题型也相对固定,一般存在相应的解题规律。通过大量的训练可以切实提高数学的解题能力,做到面对任何试题都能有条兀紊地分析和计算。三、 开始进行综合试题和应用试题的训练数学考试中有一些应用到多个知识点的综合性试题和应用型试题。这类试题一般比较灵活,难度相对较大。在首轮复习期间,虽然它们兀是重点,但也应有目的地进行一些训练,积累解题经验,这也有利于对所学知识的消化吸收,彻底弄清有关知识的纵向不横向联系,转化为自己的东西。四、 建议学习时间每天早上8:30-11:30(可根据自身情况适当调整,但此时效果最好)。需要注意的是,数学复习一定要和做一定量的习题相结合起来,所以我们在制定计划时都留出了比较多的时间来
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年中国汽车租赁行业投资分析、市场运行态势、未来前景预测报告
- 低轨卫星互联网多星协同星历外推优化与HARO可靠传输
- 二零二五年度个人旅游抵押借款合同模板与旅游服务协议
- 英语教学中“情境交谈”探微
- 二零二五年度城市道路养护承包合同模板3篇
- 二零二五年度高端艺术品收藏品交易合同3篇
- 抖音运营培训课件
- 2025版物业安全生产责任书编写教程与示范文本3篇
- 奢侈品设计师职责概述
- 2025版智能安防系统建设项目工程承包合同3篇
- 移动商务内容运营(吴洪贵)任务三 APP的品牌建立与价值提供
- 电子竞技范文10篇
- 人美版初中美术知识点汇总九年级全册
- 食堂服务质量控制方案与保障措施
- VI设计辅助图形设计(2022版)
- 眼科学常考简答题
- 物料分类帐的应用
- 乳房整形知情同意书
- 2022-2023年人教版九年级物理上册期末考试(真题)
- 根因分析(huangyan)课件
- 编本八年级下全册古诗词原文及翻译
评论
0/150
提交评论