版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
经典word整理文档,仅参考,双击此处可删除页眉页脚。本资料属于网络整理,如有侵权,请联系删除,谢谢!第11123,354759Aann2n+ann2n1Cann2n-ann2n32nSnn22n1Aan2nBan2nCan2n12nDan2n12n3a11时,a1a2…an=n2,则a3a54)nn图A3B4C.5D65an111an,a82,则a16.已知数列满足:a4n31a4n10a2n=,a2009________a2014_____)ann2kn2数k的取值范围为________.8.年广东江门一模)将集合{2ss,ijb43图9.已知在等差数列和等比数列中,a1b11b48,S10(1)求和bn;(2)310an=(nn为多大时,第21)nSna12,S312a6A8BC12D2)设nS84a3,a72a9A6B4C2D23)a1,公差为-1nS1S2a1A2B2C.12D4na1a7①a21;②a7;③S13;④S14;⑤S8-其结果为确定常数的是AC5nSn12Sm0Sm13mA3B4C5D66)dAd0BCa1d0D7)a11a3=a224an_____)a3+a8103a5a7_____)在等差数列中,a38为和n10年新课标Ⅱ)已知等差数列的公差不为零,25a1,a11(1)(2)求a1a4a7a3n第31.在等比数列中,a23a7a1036a15=A12BC6D62)x,3x3,6x6A24B0C12D3的等差数列中,a1a3a1a3+a5a2a64)Aa1a3,Ba2a3,Ca2a4,Da3a6,5n8a2a50S5S2A11B5C8D6123nSnASn2an-Sn3an2CSn43anDSn37)已知是等差数列,a11na1a2S8=_____)22n(n∈N*)等于__________.9)在等比数列中,a2a12为和n10)a13,a4=12b14b420bn(1)(2)n第41a133项21a3+a4a5A33B72C84D2nSnS3a210a19a1A.13B13C.19D32a2a4,nSnAn(n1)Bn(nC.nn12D.nn4)在等比数列中,a42a558项和等于A6B5C.4D35nSna55S5=1anan+16an(1)n(3n2)a1a10=A15BC12D7)a108a13n取最大值时,nA20B21C22D8X541n为n2个数是______________.1图9年新课标Ⅰ)已知是递增的等差数列,a2x25x+60(1)(2)n10)a18b1=16anbnan1成等差数列,bn1bn1成等比数列,n1,2,3(1)求a2(2)an(3)n1a1-11a2111an-第51.在等比数列中,a11am=a1a2a3a4a5mA9BC11D21,3,6,101,4,9,16X5511图①13=310;②25=916152131;⑤64=AC33bnan+1-b32b1012a8A0B3C8D4nSn8a2a50式子中数值不能确定的是C.an1nSn=23an,an=6a11an1an3an1an=7.已知在数列中,a11an2annan=8.已知在数列中,a11an3an3nan=_____a11an1=3an(1)an(2)1a11a21an10)a11nan1+n(n1)(1)(2)设bn3nann第61.观察(x2)′=2x,(x4)′=4x3(cosx)′=-Rf(x)f(x)=f(x)g(x)为f(x)g(x)Af(x)Bf(x)Cg(x)D2)n___________________________________)12112223122232=6122232-n____.4X561X561(1)c2b2.X561(2)OABCs1s2表示三个侧面面积,__________________.图5cosπ312cosπ5cos2π514,cosπ7cos2π7cos3π718_.6)观察下列一组等式:212=4,21×2=439292434163,43×4=163n______.7.年福建龙岩模拟)1+11+11表示无限重复)是一个固定值,可以令原式=t1+1ttt51222285④sin2(-18°)+cos248°-sin(⑤sin2(-25°)+cos255°-sin((1)5(2)(1)9)在等差数列中,a1a25,a371anan1n(1)(2)mn1mnS1Sm,Snmn第71都成立的是Alg(x2+1)≥lg(2x)B.x21C.1x21≤1D.2a2+b21-a2b2≤0,只要证A2ab1Ba2b2-1C.ab21D(a21)(b23ab,c是不全相等的实数,求证:a2b2+c2≥ab+bc+∵a,b,c∈R,∴a2+b2≥2ab,b2+c2≥2bc,a2+又abc不全相等,∴2(a2+b2+c2)≥2(ab++ac).∴a2+b2+c2≥ab+bcac.ABCD4711157111-5,7511+1,(75)2(111)2,35113511∴7-1115.ABCD5)abx2ax+b0Ax2+axb0Bx2+axb0Cx2+axb0Dx2+axb06αβ是两个不同的平面,mnα及βαβ;③n⊥β;④m⊥α.____________________.7lgx2aba+c33a3c4a2b3abc1请将错误的一个改正为________________.8){abc}{0,1,2}列三个关系:①a≠2;②b=2100a+10bc_______)|a2a3|=a1a2a3(1)(2)m1a11a2m10)d0n项Sna1=1S2S3(1)求d及Sn;(2)求mk(m,k∈N*)amam1am2amk第81.用数学归纳法证明:(n1)(n+2)…(n+n)=2n×1×3×…×(2n+1)(n∈N*),从“n=k”到“n=k+1”左端需乘的代数式是A2k1B.C.2k1D.2k3k12.用数学归纳法证明:1222n22212=n2n2+13到k时,左边应加Ak2B(k+Ck2(k+k2D(k3n与的大小关系为ABCn1或n22nnD4f(n)和g(n)①f(1)=g(1)n∈N*,f(n)f(n1)g(n)-g(n1)n∈N*时,有ABCf(n)Df(n)与g(n)51222+…+25n1是n1A12B1C122223D12226Sk=1k11k21k312k(k=1,2,3Sk1ASk12k+Sk12k21CSk12k+112k2DSk12k112k271n11n21n3m的最大值为__________.8f(n)1n1n11n1n2法正确的是________.nn2时,f(2)13;n1n=2时,f(2)1214;n2nn2f(2)12+;n2n1n2f(2)129)nSn4(n1)(Sn1)(n(1)求a1(2)求an;(3)设bnn+1annTn,求证:10)设a11an1a2n2an2+(1)若b1a2(2)若b1ca2nca2n1对第114Bk1S=2×0+11k2;S=2×1+13k3;S=2×3+17k4;S=2×7+115kS54nan11an1a82,∴a7=11a8a611a71a511a6a412a31a22a16a2009=a4×503-1a2014a1007=a4×252-17(3an1-an=(n+1)2+k(n+1)+2-n2-kn-2=2n+1+即k(2n1)k[(2n1)]max83=202152022,622;23,102123,1222232024,18=+24,2022+24b439(1)dq,则S1010a145d55⇒d1⇒an=1)dn,b4b1q38⇒q2⇒bnb1qn11,则annbn2n(2)a11a2a33b1b22b3,3(1,1)(1,2)(1,4)(2,1)(2,2)(2,4)(3,1),(3,2)(3,4)9符合题意的有(1,1)(2,2)210.解:∵an+1an(n2)1011n1(n1011n9n111011n0,an+1an0an1an;当n9an+1an0a10a9;当an1an0ann9或n=或第21Cda12S3=(a1+a3)a23a2a24da6a15d2AS8=8a1+8×72d=4a34(a12d),4a1=-20d,a15d.a1+6d=d210,a9a18d=+8×(-2)3DS1,S2成等比数列,∴S22=S1S4(2a11)2=a1(4a16)a14Aa1a7是确定的常数,故②正确;S1313a1+a132是确定的常数,故③正确;S8a6a7a85.CSm-Sm-1=am=2,Sm+1-Sm=am+1=3,am1amdSmma1mm120Sm1=m+1a1+mm+12=m6C221,21.又anan-d,故2172n1a3a22412d(1+d)24,即d24.d2an8a3a8a12da17d2a1=10,3a5a7=3(a14d)+6d)4a12(2a19d)9dn2a12d8(a13d)2(a1d)(a1+8d).a1d=4,d(d3a1)a14,d=0a11d401nSn或Sn3n210(1)da1a11成等比数列,∴a211=(a110d)2a1(a112d)d(2a125d)∵d≠0,∴2×25+25d0.d∴an=25(n2)(2)(1)a3n22(3n276n+31.可为首项,-6∴Sn=a1a4a3n2na1+a3n-n256n3n2第31Aa2a15a7a1036,则a1512.2A解析:方法一:6x63x2q3x+3x=2,3x32xx336,-12(3x+3)2=x(6x+6),9x2+18x+9=6x2+6x,3x212x9x3或x=-1()36123C4D解析:因为数列是等比数列,a26a3a9a3,a65Dq8a2a58a2a2q30,q=-2.∴S5S2=1q51q26DSna1-anq1q123an1-2337a1a2a22a1a5(a1d)2a1(a14d)d2a12S88a185686a1=2q2Sn21-2n12n12S562S669a2-a1a1(q1)∵2×2a2=3a1a3,∴4a1q=∴a1(4q-3-0q24q3q3或q=a1(q1)2q1q3a1nSn3n10.解:(1)da4a1312-33∴an=3(n设q是等比数列{bnan}有q3b4a4b1a12012438∴bn-an(b1-a1)×2n-1bnan+2n13n2n(2)nSn(36+93n)(1222n3nn12第41C2CS3=a210a1a1a3a39.a5a1q481a19a13Aa24a2a8(a16)2(a1+2)(a114),=2.∴Sn=na1nn-12dn(n1)n24Cqa5a4=52.∴a1=a4q3=∴lgan-lganlganan18lg161258(4lg23lg5)+28(lg5lg2)4lg24lg54.5Aa55S515a11d=1.∴an=1(n1)n.故1anan11nn1=1n1n+1.∴1a1a2+…+1a100a10111121100-110111101100101.6A7B5a88a135(a17d)8(a1+12d).361a1.由ana1(n1)da11)-361a1≥0⇒n≤643=故取最大值时,n21.8.n2n2a3a2=2a4a33a5a44an1n1ana223(n1)2+n-12×(n-2)n1n-22,2n22n9(1)x25x602,3,a22a4da4a22d1,∴d=12a1an32(nn2(2)nSn,(1)an2nn22n1Sn322423+n22n1,12Sn323+525n22n2,12Sn32212312412n+n+22n234+12n1n22n21n42nnSn=2n42n10(1)由2b1a1a2a22b1由a22b1b2b2a22b1(2)∵an,bn1成等差数列,∴2bn=anan+∵bn,an11成等比数列,∴a2n+1bnbn∵数列,的每一项都是正数,∴an+1bnbn时,anbn2bnbn1bn1,42∴bn=b1(n1)d2n2bn4(nan=bn-1bn=4n24n+12=4n(n+1).当n1a1=8nan4n(n1).(3)(2)1712314714n24n14n24n1271n1n∵14n2+4n-1271n1n1⇔14n24n127n2+7n⇔7n27n8n28n2⇔n2n-20⇔(n1)(n2)0时,1712314n24n11727121n1n1172712117+27×12=当n1n1a111a211a3-11an-14n24n114n24n12n-12n31412n1当17+12314n24n1171231415191711112n312n12n112n3171231415当n11727n2时,1712317=n1a111a211a3-11an-14n24n114n2112n-12n11212n1当17+12314n24n1171231471217191911112n312n12n112n117123147当n11727n2时,1712317=;当n317+12314717114n1a111a211a3-11an-第513Bb12d=-2b19d12.b16d=∵bn=an1,∴b1+b2bnan1∴a8=b1+b2+…+b73=7×(-6)+7×62×2+34D8a2a5a2(8q3)=0.∵a2≠0,∴q=-2.∴a5a3=4S5S31q51-q3=113;an+1an=q2;Sn+1Sn=1-qn+11-qn,n5(2)n-1Sn23anSn123an1+13.an=23an-23an-1,13an23an-1,anan-12,a11,则an(2)n6.13n2an1an3an11an1=3an+1an1an3⇒1an13⇒1an1+3(n1)13n7.3×2n-11an1A(n1)AnB)A1B=1.∴an+1+(n1)1=n1).∴an+n1=3×2n-1-n8n3n1解析:∵an+13an3n,∴an+13n11.令an3n1bn11的等差数列,∴bn11(n1)=n.∴an=n3n-9(1)由an13an1an112=3an+又a11232an323an12an3n-(2)(1)1an23n时,3n-1≥2×3n-,13n-1≤12×3n-11an23n-1≤13n-1a11a2+…+1an≤1+1313n13211a11a210(1)1nan11)ann(n+,n(n1)an1n1ann,即an1n1ann11(2)(1)ann1(n-1)×1=nanbn3nanSn=1×31+2×32+3×33+…+n3n,3Sn=1×32+2×33+3×34+…+n3n1,2Sn31323nn3n+1313n13n3n11-2n3n∴Sn=2n13n1第61D2.2n×1×3×5×…×(2n-1)(n3)×…×(n+31222+32(1)n1n2(1)n+1nn4s24s21s225cosπ2n+1cos2π2n+1…cosnπ2n112n6.n1n(nn+1n×(n+n1n(n1)nn2+nn=n12n,n+1n×(n+1)n12nn1n+(n1)n+1n×(n+1)72解析:类似令原式=t2tt,2tt2得t1()或t8(1)sin15°cos15°=1-12sin30°=34(2)sin2αα)sinαcos(30°-α)=sin2α+cos2(30°-α)sinαcos(30°-α)sin2α+(cos30°cosα+sin30°sinα)2-sinα(cos30°cosα+sin30°sinα)sin2α34cos2α32sinαα14sin2α-32sinαcosα12sin2α34sin2α34cos2α=9(1)d,a1a2=5a372a1d5a1=7.解得a11d=ana1+(n1)d13(n1)3nan3n(2)1anan113n-23n+1=1313n-2-13n+1,1anan1nSn1a1a2+1a2a31a3a41an1an113114+1713171313n-21313n-213n113113n+1n3nmn1mnS1Sm则S2mS1Snm3m12=14×n3n+n4m23m26mn03m26mm11m1mn4m23m26m1mnm2,n第71CAD中x0AD,B为x2B25A6(1)m⊥n,αβ,n⊥β⇒m⊥ααβ,m⊥α⇒n⊥β;(3)m⊥n,n⊥β,m⊥α⇒αβ(4)α⊥β,n⊥β,m⊥α(3)(4)(1),(2)为7lg153aclg32ablg92lg32(2ab)2blg3=2ablg94a盾.反过来,lg94alg3blg5aclg83(1lg5)3(1ac)lg5aclg83-3a3clg833a-lg5ac∴lg15=lg(3×5)=lg3lg5(2ab)(ac)3a-blg153ab8a0或a1,即a0b=1c2或a0,2c1或a=1b=0c2或a1b2c0若b2正a2b0c1100a10bc9.解:(1)∵a1a2a3=a32125又a2|q1|=1或q即q1a1=-5或q3a1∴an=-5(-1)n1或an=5×3n-(2)若q11a11a21am15m0m.若q31a11a21am1531132910110(1)S2S3(2a13d)36,将a11d2或dd0,∴d=2an12(n1)2n1,Sn12n1n2(2)(1)am1amamk[2m12mk1]k+12=k1)(k1)∵m,k∈N*,2m+k11k11,∴2m+k1=5k113.m3k12,(舍).或2mk1=13k15.m5k综上所述,m5k第815Dn125124,选6CSk+11k111k1212k11k21k12k21k11k212k112k21k1Sk12k112k7f(n)1n1n21n12n,则f(n1)-f(n)12n121n112n1-12n20{f(n)}f(n)min=f(1)=1289(1)n14×(1+1)(a1(1+2)2a1,a1当n24×(2+1)(a1a21)(22)2a2,a2(2)4(Sn1)n+22ann4(Sn11)n12an4ann22ann-n+12an1n,即anan1=n∴ann+131n3an-2n-13a233∴an=(na18a227an(nn1a18(11)3n=kak(knk+1有4(k11)(Sk11)(k2)2ak1,即4(Sk1+k2᠄
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论