导数下的线性规划_第1页
导数下的线性规划_第2页
导数下的线性规划_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

导数之线性规划截距型\ax+by模型:,斜率型:2ax-a是巨离型:(工一〃)2+(y-b)2一、极值点分布下的线性规划例、已知函数= —&2+(2—+ 在X=X处取得极大值,在X=X处取得3 1 2极小值,且0<x<1<X<2.(I)证明Q>。;(2)求z=a+2Z?的取值范围.1 2及时训练X31、已知函数/⑴=了+X31、已知函数/⑴=了+ax2+2法+c的两个极值分别为/("、/(X),若弋、乜分别在区间(0,1)和G,2)内,则如;的取值范围为()a-1A、B、C、A、B、C、-00,—yG,+oo)I4jD、( in x-oo,—Y[l,+oo7I 4hi1时,取得极大值,当A、"V37jB、「JChi1时,取得极大值,当A、"V37jB、「JC、D、133、已知函数/W=y+ax2+法+。,在%、%分别取得极大值和极小值,且满足2、已知函数/(x)=13+及2+次+4(4。/为常数),当无£%£(1,2)时取得极小值,则(b+;)2+(C—3)2的取值范围是(Xe(-1,1),XeG,4),则。+2b的取值范围是( )1 2B、B、(-6厂4)c、J1L3)D、J16,—8)…、 X3 ax24、已知函数f(x)=—+-—+2bx+c(a,b,ceR),且函数f(x)在区间S,1)内取得极小J 乙值,在区间G,2)上取得极小值,则z=(a+3)2+b2的取值范围是()A、BA、B、C、(1,2) D、(1,4)x,且xx,且xeL1,01,xe1,21,()A、(01]yG,3) b、(0,1)Y(1,3)I27二、零点问题下的线性规划C、(1,1]yG,3] D、(0,1)yI3,+8)1275、已知函数f(x)=x3+3bx2+3cx,有两个极值点\、则以b,c满足的约束条件所的点(b,c)表示区域的面积为…、 x3mx2(m+n)x -一6、已知函数f(x)= —+—+ 的两个极值点分别为x、x,且0<x <1<x,3 2 2 12 12点集(m,n)表示的平面区域存在点(x°,y0)满足yO=logJx°+4),则a的取值范围是例、已知函数f(x)=1x3+1x2+cx+d(a中0)的导函数为g(x),且g(1)=0,a<b<c,J 乙设x1,x2是方程g(x)=0的两根,则x1-x2I的范围为 及时训练1、已知函数f(x)=x3-6x2+9x+abc,其中0<a<b<c,且f(a)=f(b)=f(c)=0,一下结论正确的是()A、f(0)f(1)>0 B、f(0)f(1)f(3)>0c、f(0)f(1)f(3)<0d、f(1)f(3)>02、已知函数f(x)=x3+ax2+bx+c=0的三个解分别可以做椭圆、双曲线、抛物线的离b心率,则一的取值范围是 。a三、最值、单调下的线性规划例、已知函数f(X)=X3+2bx2+ex+1在区间L1,2]上是减函数,那么2b+c()15 15 15 15A、有最大值—- B、有最小值—- C、有最大值— D、有最小值—及时训练1、定义在[—2,4]上的函数f(x)的部分值如下表:x—204f(x)1—112、f(x)的导函数f(x)的图象如图,两正数a,b满足,b+3,,f(2a+b)<1,则不的取值范

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论