1.3 正方形的性质与判定_第1页
1.3 正方形的性质与判定_第2页
1.3 正方形的性质与判定_第3页
1.3 正方形的性质与判定_第4页
1.3 正方形的性质与判定_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章

特殊平行边形3.正方的判定知识与能:1.掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题。2.发现决定中点四边形形状的因素熟练运用特殊四边形的判定及性质对中点四边形进行判断,并能对自己的猜想进行证明,进一步发展学生演绎推理的能力。3.使学生进一步体会证明的必要性以及计算与证明在解决问题中的作用。过程与法:1.经历“探索—发现—猜想—证明”的过程,掌握正方形的判定定理,发现决定中点四边形形状的因素,并能综合运用特殊四边形的性质和判定解决问题。2.通过凸四边形的中点四边形的探求过程以及引申至凹四边形的中点四边形的探求过程,引导学生体会证明过程中所运用的由一般到特殊再到一般的归纳、类比、转化的思想方法等,培养积极探索、勇于创新的精神,以及推陈出新的创新能力。情感与度:通过师生互动、合作交流以及多媒体软件的使用,进一步发展学生合作交流的能力和数学表达能力,并使学生发现数学中蕴涵的美,激发学生学习的自觉性、积极性,提高学习数学的兴趣。教过本节课设计了六个教学环节:第一环节:情景引入;第二环节:运用巩固;第三环节:猜想结论,分组验证;第四环节:学以致用;第五环节:课堂小结;第六环节:布置作业。第环:景入活动内:问题:将一张长方形纸对折两次,然后剪下一个角,打开,怎样剪才能剪出一个正方形?(学生动手折叠、思考、剪切)1

活动目:因为正方形的两条对角线把它分成四个全等的等腰直角三角形,把折痕作对角线,这时只需剪一个等腰直角三角形打开即是正方形此只要保证剪口线与折痕成°角即可。活动的意事项:部分学生在动手操作时,会剪出菱形,教师要引导学生思考:正方形是特殊的矩形和菱形,因此想得到一个正方形,可以在矩形的基础上强化边的条件得到,也可以在菱形的基础上强化角的条件得到而折痕是正方形的对角线所以本环节要从对角线的角度考虑对角线要垂直相等且平分生很自然的会想到需要剪一个等腰直角三角形,因此只要保证剪口线与折痕成45°角即可,本节课的第一个教学难点迎刃而解。本环节中教师可以鼓励操作快的学生帮助有困难的学生请同学到讲台前讲解自己的做法和判断依据,顺势引导学生总结出正方形的判定理:1.对角线等的菱是正形。2.对角线直的矩是正形。3.有一个是直角菱形正方形教师可以课件展示下面的框架图,复习巩固平行四边形、矩形、菱形、正方形之间的关系。此框架图给出了正方形的判别条件先判定一个四边形是平行四边形再判定这个平行四边形是矩形,然后再判定这个矩形是菱形;或者先判定一个四边形是菱形,再判定这个菱形是矩形。由于判定平行四边形、矩形、菱形的方法各异,所给出的条件不一样所以判定一个四边形是不是正方形的具体条件相应可作变化在应用时要仔细辨别2

后才可以作出判断。第环:用固活动内活动目通过例2,复习巩固平行四边、菱形、矩形、正方形的性质与判定定理,让学生尝试综合运用特殊四边形的性质和判定解决问题。活动的意事项此环节采用合作学习的策略,鼓励学生多层面、多角度地思考正方形判定的运用,目的在于加深学生对判定本身的理解和掌握,同时也丰富了交流的内容,激发了交流的气氛,使新旧知识融会贯通,达到同学间的沟通、互补、共同提高的目的,教师应对学生的合理讲解给予肯定和鼓励。而且整个过程也使学生重新回顾了证明的步骤,为进一步发展学生的演绎推理能力奠定了基础。3

第环:想论分验活动内1:

A

E

B

FC

A

H

E

B

G

FC

A

H

E

B

G

FC图1-8-1

D图1-8-2

D图1-8-3问题:1.如图,在ΔABC,EF为ΔABC的中位线,①若∠BEF=30②若EF=8cm,

则∠A=.则AC=.2.在AC的下方找一点D,做CD和AD中点G、H,问EF和GH有怎样的关系?EH和FG呢?3.四边形EFGH的形状有什么特征?活动目通过问题串,复习三角形中位线性质定理和命题“依次连接任意四边形各边的中点可以得到一个平行四边形活动的意事项教师在提问时选择平时学习数学有困难的学生由于是前面已经学过的知识学生们回答得很流畅,这种低起点的问题,也增强了学生学习数学的自信心。此外,课件的运用,直观形象,也分解了难点。活动内2:问题:如果四边形ABCD变为特殊的四边形,中点四边形会有怎样的变化呢?活动目在一个开放的情景中引导学生体会由一般到特殊的归纳类比化的思想方法,同时培养学生的积极探索、勇于创新的精神。此环节的设置引发了学生对特殊四边形的中点四边形的思考,学生们畅所欲言,互相补充完善,气氛热烈,进一步发展了学生合作交流的能力和数学表达能力,同时也是对之前所学的特殊四边形进行回顾。老师在这一环节中,对学生的回答给予充分的肯定和鼓励,再一次增强了学生学习数学的自信心。4

得出结:平行四边形的中点四边形是平行四边形;矩形的中点四边形是菱形;菱形的中点四边形是矩形;正方形的中点四边形是正方形;等腰梯形的中点四边形是菱形;直角梯形的中点四边形是平行四边形;梯形的中点四边形是平行四边形。第环:堂结活动内1.本节课重点学习了什么知识,应用了哪些数学思想和方法?2.通过本节课的学习你有哪些收获?在今后的学习过程中应该怎么做?活动目培养学生的归纳能力学生形成完整的知识结构结研究数学问题的一般方法。活动的意事项学生们畅所欲言自己的收获,比如:有的学生说:通过这节课我掌握了正方形的判定定理,知道了中点四边形的形状与原四边形对角线有关;有的学生说:通过这节课我了解了类比、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论