17.1 勾股定理 第1课时 勾股定理 同步练习_第1页
17.1 勾股定理 第1课时 勾股定理 同步练习_第2页
17.1 勾股定理 第1课时 勾股定理 同步练习_第3页
17.1 勾股定理 第1课时 勾股定理 同步练习_第4页
17.1 勾股定理 第1课时 勾股定理 同步练习_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

21世纪教育网精品试卷·第2页(共2页)17.1勾股定理第1课时勾股定理基础训练知识点1勾股定理1.(2016·株洲)如图,以直角三角形的三边a,b,c为边或直径,分别向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形个数是()A.1 B.2 C.3 D.42.若一个直角三角形的两直角边的长分别为a,b,斜边长为c,则下列关于a,b,c的关系式中不正确的是()A.b2=c2-a2 B.a2=c2-b2C.b2=a2-c2 D.c2=a2+b23.一直角三角形的两边长分别为3和4,则第三边长为()A.5 B. C. D.5或4.(2016·荆门)如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.105.(2016·东营)在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或106.在△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8B.4.8或3.8C.3.8D.5知识点2勾股定理与面积的关系7.如图,字母B所代表的正方形的面积是()A.12 B.13 C.144 D.1948.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,则b的面积为()A.3 B.4 C.5 D.79.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.8010.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13 B.26 C.47 D.94易错点考虑问题不全面而漏解(分类讨论思想)11.若一个直角三角形的三边长分别为a,b,c,且a2=9,b2=16,则c2为()A.25B.7C.7或25D.9或16提升训练考查角度1利用勾股定理求直角三角形中的边长12.如图,在△ABC中,CD⊥AB于D,AC=4,BC=3,DB=.(1)求DC的长;(2)求AB的长.考查角度2利用勾股定理求三角形的面积13.(2016·益阳)在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.如图,作AD⊥BC于D,

设BD=x,用含x

的代数式表示CD→根据勾股定理,利用

AD作为“桥梁”,建

立方程模型求出x→利用勾股定理求出AD的长,再计算三角形面积探究培优拔尖角度1利用勾股定理解非直角三角形问题(倍长中线法)14.如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)求△ABC中BC边上的高.拔尖角度2利用勾股定理解四边形问题(补形法)15.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=6,CD=4,求:(1)AB的长;(2)四边形ABCD的面积.参考答案1.【答案】D解:因为直角三角形的三边为a,b,c,所以应用勾股定理可得a2+b2=c2.第一个图形中,首先根据等边三角形的面积的求法,表示出3个等边三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第二个图形中,首先根据圆的面积的求法,表示出3个半圆形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积,然后根据a2+b2=c2,可得S1+S2=S3.2.【答案】C3.【答案】D解:当两直角边长分别为3和4时,斜边长为=5;当斜边长为4时,另一条直角边长为=.故选D.4.【答案】C5.【答案】C解:根据题意画出图形,如图①所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得BD==8,CD==2,此时BC=BD+CD=8+2=10;如图②所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得BD==8,CD==2,此时BC=BD-CD=8-2=6,则BC的长为6或10.故选C.6.【答案】A解:如图,过A点作AF⊥BC于F,连接AP,因为在△ABC中,AB=AC=5,BC=8,所以BF=4,所以在Rt△ABF中,AF2=AB2-BF2=9,所以AF=3,所以×8×3=×5×PD+×5×PE,即12=×5(PD+PE),解得PD+PE=4.8.7.【答案】C8.【答案】D9.【答案】C解:利用勾股定理求出正方形的边长为10,阴影部分的面积为正方形面积与直角三角形面积之差.10.【答案】C11.错解:A诊断:容易忽略a,c为直角边长,b为斜边长这种情况,故很容易错选A.正解:C解题策略:解答此题要用分类讨论思想.此题有两种情况:a,b为直角边长,c为斜边长和a,c为直角边长,b为斜边长,利用勾股定理即可求解.12.解:(1)在Rt△BCD中,DC2=BC2-BD2=32-=,所以DC=.(2)在Rt△ACD中,AD2=AC2-CD2=42-=,所以AD=,所以AB=AD+BD=+=5.13.解:在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14-x,由勾股定理得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,所以152-x2=132-(14-x)2,解得x=9.在Rt△ABD中,AD===12.所以S△ABC=BC·AD=×14×12=84.14.解:(1)∵DB⊥BC,BC=4,CD=5,∴BD==3.(2)如图,延长BD至E,使DE=BD,连接AE.∵D是AC的中点,∴AD=DC.在△BDC和△EDA中,∴△BDC≌△EDA(SAS),∴∠DAE=∠DCB,∴AE∥BC.∵BD⊥BC,∴BE⊥AE.∴BE为△ABC中BC边上的高,∴BE=2BD=6.15.解:(1)如图,延长AD,BC交于点E,在Rt△ABE中,∠A=60°,∴∠E=30°.在Rt△CDE中,CD=4,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论