版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
特殊函数的应用及证明题第一页,共二十三页,2022年,8月28日(2011•盐城)如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?
(结果精确到0.1cm,参考数据:≈1.732)第二页,共二十三页,2022年,8月28日∵灯罩BC长为30cm,光线最佳时灯罩BC与水平线所成的角为30°,∵CM⊥MB,即三角形CMB为直角三角形,∴sin30°==,在直角三角形ABF中,sin60°=,∴=,解得:BF=20,又∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴CE=CM+MD+DE=CM+BF+ED=15+20+2≈51.6cm.答:此时灯罩顶端C到桌面的高度CE是51.6cm第三页,共二十三页,2022年,8月28日一幢房屋的侧面外墙壁的形状如图所示,它由等腰三角形OCD和矩形ABCD组成,∠OCD=25°,外墙壁上用涂料涂成颜色相同的条纹,其中一块的形状是四边形EFGH,测得FG∥EH,GH=2.6m,∠FGB=65°。
(1)求证:GF⊥OC;
(2)求EF的长(结果精确到0.1m)。
(参考数据:sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)第四页,共二十三页,2022年,8月28日(1)在四边形BCFG中,∠GFC=360°-90°-65°-(90°+25°)=90°则GF⊥OC(2)如图,作FM∥GH交EH与M,则有平行四边形FGHM,∴FM=GH=2.6m,∠EFM=25°∵FG∥EH,GF⊥OC∴EH⊥OC在Rt△EFM中:EF=FM·cos25°≈2.6×0.91=2.4m第五页,共二十三页,2022年,8月28日(2011•淮安)图1为平地上一幢建筑物与铁塔图,图2为其示意图.建筑物AB与铁塔CD都垂直于地面,BD=30m,在A点测得D点的俯角为45°,测得C点的仰角为60°.求铁塔CD的高度.第六页,共二十三页,2022年,8月28日∵BD=30m,在A点测得D点的俯角为45°,测得C点的仰角为60°,∴AB=BD=DE=AE=30,∴tan60°==,∴CE=30,∴铁塔CD的高度为:30+30≈82米,答:铁塔CD的高度为82米.第七页,共二十三页,2022年,8月28日如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.
(1)若AC=6,AB=10,求⊙O的半径;
(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.第八页,共二十三页,2022年,8月28日(1)连接OD.设⊙O的半径为r.∵BC切⊙O于点D,∴OD⊥BC.∵∠C=90°,∴OD∥AC,∴△OBD∽△ABC.∴=,即10r=6(10﹣r).解得r=,∴⊙O的半径为.(2)四边形OFDE是菱形.∵四边形BDEF是平行四边形,∴∠DEF=∠B.∵∠DEF=∠DOB,∴∠B=∠DOB.∵∠ODB=90°,∴∠DOB+∠B=90°,∴∠DOB=60°.∵DE∥AB,∴∠ODE=60°∵OD=OE∴OD=DE.∵OD=OF,∴DE=OF.∴四边形OFDE是平行四边形.∵OE=OF,∴平行四边形OFDE是菱形.第九页,共二十三页,2022年,8月28日如图,四边形ABCD是矩形,直线l垂直平分线段AC,垂足为O,直线l分别与线段AD、CB的延长线交于点E、F。(1)△ABC与△FOA相似吗?为什么?(2)试判定四边形AFCE的形状,并说明理由。第十页,共二十三页,2022年,8月28日(1)△ABC∽△FOA,理由如下:
在矩形ABCD中:∠BAC+∠BCA=90°
∵直线l垂直平分线段AC
∴∠OFC+∠BCA=90°
∴∠BAC=∠OFC
又∵∠ABC=∠FOC=90°
∴△ABC∽△FOA
(2)四边形AFCE为菱形,理由如下:
∵AE∥FC
∴△AOE∽△COF
则OE:OF=OA:OC=1:1
∴OE=OF
∴AC与EF互相垂直平分
则四边形AFCE为菱形。第十一页,共二十三页,2022年,8月28日如图,以点O为圆心的两个同心圆中,矩形ABCD的边BC为大圆的弦,边AD与小圆相切于点M,OM的延长线与BC相交于点N。
(1)点N是线段BC的中点吗?为什么?
(2)若圆环的宽度(两圆半径之差)为6cm,AB=5cm,BC=10cm,求小圆的半径。第十二页,共二十三页,2022年,8月28日(1)点N是线段BC的中点,理由如下:
∵AD与小圆相切于点M
∴ON⊥AD
又∵AD∥BC
∴ON⊥BC
∴点N是线段BC的中点
(2)连接OB,设小圆的半径为r,
则ON=r+5,OB=r+6,且BN=5
在Rt△OBN中:
5²+(r+5)²=(r+6)²
解得:r=7cm第十三页,共二十三页,2022年,8月28日在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限。
(1)当∠BAO=45°时,求点P的坐标;
(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB的平分线上;yBAOCDPx(第28题图)
(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由。yBAOCDPx(第28题图)第十四页,共二十三页,2022年,8月28日(1)当∠BAO=45°时,四边形OAPB为正方形
OA=OB=a·cos45°=a
∴P点坐标为(a,a)
(2)作DE⊥x轴于E,PF⊥x轴于F,
设A点坐标为(m,0),B点坐标为(0,n)
∵∠BAO+∠DAE=∠BAO+∠ABO=90°
∴∠DAE=∠ABO
在△AOB和△DEA中:
∴△AOB≌和△DEA(AAS)
∴AE=0B=n,DE=OA=m,
则D点坐标为(m+n,m)
∵点P为BD的中点,且B点坐标为(0,n)
∴P点坐标为(,)∴PF=OF=∴∠POF=45°,
∴OP平分∠AOB。即无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB的平分线上;
(3)当A,B分别在x轴正半轴和y轴负半轴上运动时,设PF与PA的夹角为α,
则0°≤α<45°
h=PF=PA·cosα=a·cosα
∵0°≤α<45°∴<cosα≤1
∴a<h≤a第十五页,共二十三页,2022年,8月28日如图,在Rt△ABC中,∠ACB=90°,AC=6㎝,BC=8㎝,P为BC的中点.动点Q从点P出发,沿射线PC方向以2㎝/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为ts.
⑴当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;
⑵已知⊙O为△ABC的外接圆,若⊙P与⊙O相切,求t的值
ABCPQO(第26题)第十六页,共二十三页,2022年,8月28日⑴直线与⊙P相切.
如图,过点P作PD⊥AB,垂足为D.
在Rt△ABC中,∠ACB=90°,∵AC=6cm,BC=8cm,
∴.∵P为BC的中点,∴PB=4cm.
∵∠PDB=∠ACB=90°,∠PBD=∠ABC.∴△PBD∽△ABC.
∴,即,∴PD=2.4(cm).
当时,(cm)
∴,即圆心到直线的距离等于⊙P的半径.
∴直线与⊙P相切.
⑵∠ACB=90°,∴AB为△ABC的外切圆的直径.∴.
连接OP.∵P为BC的中点,∴.
∵点P在⊙O内部,∴⊙P与⊙O只能内切.
∴或,∴=1或4.
∴⊙P与⊙O相切时,t的值为1或4.
第十七页,共二十三页,2022年,8月28日如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.
⑴如图②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的自相似点.
⑵在△ABC中,∠A<∠B<∠C.
①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹);
②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.BBBCCCAAADPE①②③(第27题)第十八页,共二十三页,2022年,8月28日⑴在Rt△ABC中,∠ACB=90°,CD是AB上的中线,∴,∴CD=BD.
∴∠BCE=∠ABC.∵BE⊥CD,∴∠BEC=90°,∴∠BEC=∠ACB.∴△BCE∽△ABC.
∴E是△ABC的自相似点.
第十九页,共二十三页,2022年,8月28日⑵①作图略.作法如下:(i)在∠ABC内,作∠CBD=∠A;(ii)在∠ACB内,作∠BCE=∠ABC;BD交CE于点P.则P为△ABC的自相似点.②连接PB、PC.∵P为△ABC的内心,∴,.∵P为△ABC的自相似点,∴△BCP∽△ABC.∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC=2∠A,∠ACB=2∠BCP=4∠A.∵∠A+∠ABC+∠ACB=180°.∴∠A+2∠A+4∠A=180°.∴.∴该
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 施工招标文件范本
- 建筑工程施工质量验收标准和规范
- 2024高中地理第四章自然环境对人类活动的影响3自然资源与人类活动学案湘教版必修1
- 2024高中生物第6章生态环境的保护第1节人口增长对生态环境的影响课堂演练含解析新人教版必修3
- 2024高考历史一轮复习方案专题三现代中国的政治建设祖国统一与对外关系第8讲现代中国的对外关系教学案+练习人民版
- 2024高考地理一轮复习第一部分自然地理-重在理解第一章行星地球第5讲地球公转及其地理意义学案新人教版
- (译林版)二年级英语上册期中检测卷-附参考答案
- 变频技术及应用 课件 学习情境1、2 变频器的基础知识、认识变频器
- 部编版九年级上册语文期中复习:文学类文本阅读-专项练习题(文本版-含答案)
- 农业土地政策资料讲解
- Unit 3 We should obey the rules. Lesson15(说课稿)-2023-2024学年人教精通版英语五年级下册
- 绵阳市高中2022级(2025届)高三第二次诊断性考试(二诊)语文试卷(含答案)
- 人力资源许可证制度(服务流程、服务协议、收费标准、信息发布审查和投诉处理)
- 2020年高级统计实务与案例分析真题及答案
- 全面质量管理(TQM)基本知识
- 产品供货质量保障措施
- 电力电缆高频局放试验报告
- 建设工程监理费计算器(免费)
- JJG 517-2016出租汽车计价器
- JJF 1914-2021金相显微镜校准规范
- GB/T 32045-2015节能量测量和验证实施指南
评论
0/150
提交评论