2022-2023学年贵州省贵阳市普通高校对口单招数学自考预测试题(含答案)_第1页
2022-2023学年贵州省贵阳市普通高校对口单招数学自考预测试题(含答案)_第2页
2022-2023学年贵州省贵阳市普通高校对口单招数学自考预测试题(含答案)_第3页
2022-2023学年贵州省贵阳市普通高校对口单招数学自考预测试题(含答案)_第4页
2022-2023学年贵州省贵阳市普通高校对口单招数学自考预测试题(含答案)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年贵州省贵阳市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.已知向量a=(1,k),b=(2,2),且a+b与a共线,那么a×b的值为()A.1B.2C.3D.4

2.若函数f(x)=x2+ax+3在(-∞,1]上单调递减,则实数a的取值范围是()A.(-∞,1]B.[―1,+∞)C.(―∞,-2]D.(-2,+∞)

3.椭圆9x2+16y2=144短轴长等于()A.3B.4C.6D.8

4.在等差数列{an}中,如果a3+a4+a5+a6+a7+a8=30,则数列的前10项的和S10为()A.30B.40C.50D.60

5.已知sin2α<0,且cosa>0,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限

6.A≠ф是A∩B=ф的()A.充分条件B.必要条件C.充要条件D.无法确定

7.已知向量a(3,-1),b(1,-2),则他们的夹角是()A.

B.

C.

D.

8.A.{-3}

B.{3}

C.{-3,3}

D.

9.若是两条不重合的直线表示平面,给出下列正确的个数()(1)(2)(3)(4)A.lB.2C.3D.4

10.设集合,则MS等于()A.{x|x>}

B.{x|x≥}

C.{x|x<}

D.{x|x≤}

二、填空题(10题)11.

12.等差数列中,a1>0,S4=S9,Sn取最大值时,n=_____.

13.

14.

15.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:4,现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有6件,那么n=

16.

17.在等比数列{an}中,a5

=4,a7

=6,则a9

=

18.为椭圆的焦点,P为椭圆上任一点,则的周长是_____.

19.执行如图所示的流程图,则输出的k的值为_______.

20.直线经过点(-1,3),其倾斜角为135°,则直线l的方程为_____.

三、计算题(5题)21.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

22.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

23.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

24.解不等式4<|1-3x|<7

25.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

四、简答题(10题)26.已知集合求x,y的值

27.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求实数x。

28.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.

29.已知抛物线的焦点到准线L的距离为2。(1)求拋物线的方程及焦点下的坐标。(2)过点P(4,0)的直线交拋物线AB两点,求的值。

30.如图,在直三棱柱中,已知(1)证明:AC丄BC;(2)求三棱锥的体积.

31.证明:函数是奇函数

32.已知a是第二象限内的角,简化

33.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。

34.已知是等差数列的前n项和,若,.求公差d.

35.如图:在长方体从中,E,F分别为和AB和中点。(1)求证:AF//平面。(2)求与底面ABCD所成角的正切值。

五、解答题(10题)36.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

37.已知函数f(x)=log21+x/1-x.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)用定义讨论f(x)的单调性.

38.

39.已知递增等比数列{an}满足:a2+a3+a4=14,且a3+1是a2,a4的等差中项.(1)求数列{an}的通项公式;(2)若数列{an}的前n项和为Sn,求使Sn<63成立的正整数n的最大值.

40.给定椭圆C:x2/a2+y2/b2(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆已知椭圆C的离心率为/2,且经过点(0,1).(1)求椭圆C的方程;(2)求直线l:x—y+3=0被椭圆C的伴随圆C1所截得的弦长.

41.已知圆C的圆心在直线y=x上,半径为5且过点A(4,5),B(1,6)两点.(1)求圆C的方程;(2)过点M(-2,3)的直线l被圆C所截得的线段的长为8,求直线l的方程.

42.

43.已知数列{an}是等差数列,且a2=3,a4+a5+a6=27(1)求通项公式an(2)若bn=a2n,求数列{bn}的前n项和Tn.

44.设椭圆x2/a2+y2/b2的方程为点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|直线OM的斜率为.(1)求E的离心率e(2)设点C的坐标为(0,-b),N为线段AC的中点,证明:MN丄AB

45.

六、单选题(0题)46.A.B.C.D.

参考答案

1.D平面向量的线性运算∵向量a=(1,k),b=(2,2),∴a+b=(3,k+2),又a+b与a共线.∴(k+2)-3k=0,解得k=1,∴A×b=(1,1).(2,2)=1×2+1×2=4,

2.C二次函数图像的性质.根据二次函数图象的对称性有-a/2≥1,得a≤-2.

3.C

4.C

5.D三角函数值的符号∵sin2α=2sinα.cosα<0,又cosα>0,∴sinα<0,∴α的终边在第四象限,

6.A

7.B因为,所以,,因此,由于两向量夹角范围为[0,π],所以夹角为π/4。

8.C

9.B若两条不重合的直线表示平面,由直线和平面之间的关系可知(1)、(4)正确。

10.A由于MS表示既属于集合M又属于集合的所有元素的集合,因此MS=。

11.π

12.6或7,由题可知,4a1+6d=9a1+36d,解得a1=-6d,所以Sn=-6dn+n(n+1)d/2=,又因为a1大于0,d小于0,所以当n=6或7时,Sn取最大值。

13.

14.-5或3

15.72

16.0.4

17.

18.18,

19.5程序框图的运算.由题意,执行程序框图,可得k=1,S=1,S=3,k=2不满足条件S>16,S=8,k=3不满足条件S>16,S=16,k=4不满足条件S>16,S=27,k=5满足条件S>16,退出循环,输出k的值为5.故答案为:5.

20.x+y-2=0

21.

22.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

23.

24.

25.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

26.

27.

∵μ//v∴(2x+1.4)=(2-x,3)得

28.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)

∴数列为首项b1=32,q=16的等比数列

29.(1)拋物线焦点F(,0),准线L:x=-,∴焦点到准线的距离p=2∴抛物线的方程为y2=4x,焦点为F(1,0)(2)直线AB与x轴不平行,故可设它的方程为x=my+4,得y2-4m-16=0由设A(x1,x2),B(y1,y2),则y1y2=-16∴

30.

31.证明:∵∴则,此函数为奇函数

32.

33.

34.根据等差数列前n项和公式得解得:d=4

35.

36.

37.(1)要使函数f(x)=㏒21+x/1-x有意义,则须1+x/1-x>0解得-1<x<1,所以f(x)的定义域为{x|-1<x<1}.(2)因为f(x)的定义域为{x|-1<x<1},且f(-x)=㏒2(1+x/1-x)-1=-㏒21+x/1-x=-f(x).所以f(x)是定义在(-1,1)上的奇函数.(3)设-1<x1<x2<1,则f(x1)-f(x2)=log1+x1/1+x2=㏒(1+x1)(1-x2)f(1-x1)(1+x2)∵-1<x1<x2<1

38.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论