




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.科目数学年级八班级授课时间年月日课题16.1二次根式(1)节次“三维”目标(含知识目标、能力目标、情感态度与价值观目标)1、了解二次根式的概念,能判断一个式子是不是二次根式。2、掌握二次根式有意义的条件。3、掌握二次根式的基本性质:和教材分析(含重点、难点、关键点)重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质和教法提示讲练法讨论法教具准备含课件、电教手段等PPT课件教学过程设计(含作业安排)(一)复习引入:(1)已知x2=a,那么a是x的______;x是a的________,记为______,a一定是_______数。(2)4的算术平方根为2,用式子表示为=__________;正数a的算术平方根为_______,0的算术平方根为_______;式子的意义是。(二)提出问题1、式子表示什么意义?2、什么叫做二次根式?3、式子的意义是什么?4、的意义是什么?5、如何确定一个二次根式有无意义?(三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?,,,,,2、计算:(1)(2)(3)(4)根据计算结果,你能得出结论:,其中,的意义是。3、当a为正数时指a的,而0的算术平方根是,负数,只有非负数a才有算术平方根。所以,在二次根式中,字母a必须满足,才有意义。(三)合作探究1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习:x取何值时,下列各二次根式有意义?①②③2、(1)若有意义,则a的值为___________.(2)若 在实数范围内有意义,则x为()。A.正数 B.负数 C.非负数 D.非正数 (四)展示反馈(学生归纳总结)1.非负数a的算术平方根(a≥0)叫做二次根式.二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a必须是非负数。2.式子的取值是非负数。(五)精讲点拨1、二次根式的基本性质()2=a成立的条件是a≥0,利用这个性质可以求二次根式的平方,如()2=5;也可以把一个非负数写成一个数的平方形式,如5=()2.2、讨论二次根式的被开方数中字母的取值,实际上是解所含字母的不等式。(五)拓展延伸1、(1)在式子中,x的取值范围是____________.(2)已知+=0,则x-y=_____________.(3)已知y=+,则=_____________。2、由公式,我们可以得到公式a=,利用此公式可以把任意一个非负数写成一个数的平方的形式。(1)把下列非负数写成一个数的平方的形式:5
0.35(2)在实数范围内因式分解4a-11(六)达标测试A组(一)填空题:1、=________;2、在实数范围内因式分解:(1)x2-9=x2-()2=(x+____)(x-____)(2)x2-3=x2-()2=(x+_____)(x-_____)(二)选择题:1、计算 () A.169 B.-13 C±13D.132、已知 A.x>-3B.x<-3C.x=-3Dx的值不能确定3、下列计算中,不正确的是()。A.3= B0.5=C.=0.3 D=35B组(一)选择题:1、下列各式中,正确的是()。A. = BCD2、如果等式=x成立,那么x为()。Ax≤0;B.x=0;C.x<0;D.x≥0(二)填空题:1、若,则=。2、分解因式:X4-4X2+4=________.3、当x=时,代数式有最小值,其最小值是。教学后记【教学后记】
科目数学年级八班级授课时间年月日课题16.2二次根式的乘除法二次根式的乘法节次“三维”目标(含知识目标、能力目标、情感态度与价值观目标)1、掌握二次根式的乘法法则和积的算术平方根的性质。2、熟练进行二次根式的乘法运算及化简。教材分析(含重点、难点、关键点)重点:掌握和应用二次根式的乘法法则和积的算术平方根的性质。难点:正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简教法提示讲练法讨论法教具准备含课件、电教手段等PPT课件教学过程设计(含作业安排)(一)复习回顾1、计算:(1)×=______=_______(2)×=_______=_______(3)×=_______=_______2、根据上题计算结果,用“>”、“<”或“=”填空:(1)×_____(2)×____(3)×__(二)提出问题1、二次根式的乘法法则是什么?如何归纳出这一法则的?2、如何二次根式的乘法法则进行计算?3、积的算术平方根有什么性质?4、如何运用积的算术平方根的性质进行二次根式的化简。(三)自主学习自学课本第5—6页“积的算术平方根”前的内容,完成下面的题目:1、用计算器填空:(1)×____(2)×____(3)×____(4)×____2、由上题并结合知识回顾中的结论,你发现了什么规律?能用数学表达式表示发现的规律吗?3、二次根式的乘法法则是:(四)合作交流1、自学课本6页例1后,依照例题进行计算:(1)×(2)2×3(3)·(4)·· 2、自学课本第6—7页内容,完成下列问题:(1)用式子表示积的算术平方根的性质:。(2)化简:①②③④(五)展示反馈展示学习成果后,请大家讨论:对于×的运算中不必把它变成后再进行计算,你有什么好办法?(六)精讲点拨1、当二次根式前面有系数时,可类比单项式乘以单项式法则进行计算:即系数之积作为积的系数,被开方数之积为被开方数。2、化简二次根式达到的要求:(1)被开方数进行因数或因式分解。(2)分解后把能开尽方的开出来。(七)拓展延伸1、判断下列各式是否正确并说明理由。(1)=(2)=ab(3)6×(-2)==(4)===12 2、不改变式子的值,把根号外的非负因式适当变形后移入根号内。(1)-3(2)(八)达标测试:A组1、选择题(1)等式成立的条件是()A.x≥1B.x≥-1C.-1≤x≤1D.x≥1或x≤-1(2)下列各等式成立的是().A.4×2=8B.5×4=20C.4×3=7D.5×4=20(3)二次根式的计算结果是()A.2B.-2C.6D.122、化简:(1);(2);3、计算:(1);(2);B组1、选择题(1)若,则=()A.4B.2C.-2D.1(2)下列各式的计算中,不正确的是()A.=(-2)×(-4)=8B.C.D.2、计算:(1)6×(-2);(2);教学后记【教学后记】
.科目数学年级八班级授课时间年月日课题二次根式的除法节次“三维”目标(含知识目标、能力目标、情感态度与价值观目标)1、掌握二次根式的除法法则和商的算术平方根的性质。2、能熟练进行二次根式的除法运算及化简。教材分析(含重点、难点、关键点)重点:掌握和应用二次根式的除法法则和商的算术平方根的性质。难点:正确依据二次根式的除法法则和商的算术平方根的性质进行二次根式的化简。教法提示讲练法讨论法教具准备含课件、电教手段等PPT课件教学过程设计(含作业安排)(一)复习回顾1、写出二次根式的乘法法则和积的算术平方根的性质2、计算:(1)3×(-4)(2)3、填空:(1)=________,=_________(2)=________,=________(3)=________,=_________(二)提出问题:1、二次根式的除法法则是什么?如何归纳出这一法则的?2、如何二次根式的除法法则进行计算?3、商的算术平方根有什么性质?4、如何运用商的算术平方根的性质进行二次根式的化简?(三)自主学习自学课本第7页—第8页内容,完成下面的题目:1、由“知识回顾3题”可得规律:___________________2、利用计算器计算填空:(1)=_________(2)=_________(3)=______规律:__________________3、根据大家的练习和解答,我们可以得到二次根式的除法法则:。把这个法则反过来,得到商的算术平方根性质:。(四)合作交流1、自学课本例3,仿照例题完成下面的题目:计算:(1)(2)2、自学课本例4,仿照例题完成下面的题目:化简:(1)(2)(五)精讲点拨1、当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,被开方数之商为被开方数。2、化简二次根式达到的要求:(1)被开方数不含分母;(2)分母中不含有二次根式。(六)拓展延伸阅读下列运算过程:,数学上将这种把分母的根号去掉的过程称作“分母有理化”。利用上述方法化简:(1)=_________(2)=_________(3)=________(4)=______(七)达标测试:A组1、选择题(1)计算的结果是().A.B.C.D.(2)化简的结果是()A.-B.-C.-D.-2、计算:(1)(2)(3)(4)B组用两种方法计算:(1)(2)教学后记【教学后记】
.科目数学年级八班级授课时间年月日课题最简二次根式节次“三维”目标(含知识目标、能力目标、情感态度与价值观目标)1、理解最简二次根式的概念。2、把二次根式化成最简二次根式.3、熟练进行二次根式的乘除混合运算。教材分析(含重点、难点、关键点)重点:最简二次根式的运用。难点:会判断二次根式是否是最简二次根式和二次根式的乘除混合运算教法提示讲练法讨论法教具准备含课件、电教手段等PPT课件教学过程设计(含作业安排)(一)复习回顾1、化简(1)(2)2、结合上题的计算结果,回顾前两节中利用积、商的算术平方根的性质化简二次根式达到的要求是什么?(二)提出问题:1、什么是最简二次根式?2、如何判断一个二次根式是否是最简二次根式?3、如何进行二次根式的乘除混合运算?(三)自主学习自学课本第9页内容,完成下面的题目:1、满足于,的二次根式称为最简二次根式.2、化简:(1)(2)(3)(4)(四)合作交流1、计算:2、比较下列数的大小(1)与(2)3、如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=6cm,求AB的长.(五)精讲点拨1、化简二次根式的方法有多种,比较常见的是运用积、商的算术平方根的性质和分母有理化。2、判断是否为最简二次根式的两条标准:(1)被开方数不含分母;(2)被开方数中所有因数或因式的幂的指数都小于2.(六)拓展延伸观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:,,同理可得:=,……从计算结果中找出规律,并利用这一规律计算(……+)()的值.(七)达标测试:A组1、选择题(1)如果(y>0)是二次根式,化为最简二次根式是().A.(y>0)B.(y>0)C.(y>0)D.以上都不对(2)化简二次根式的结果是A、B、-C、D、-2、填空:(1)化简=_________.(x≥0)(2)已知,则的值等于__________.3、计算:(1)(2)B组1、计算:(a>0,b>0)2、若x、y为实数,且y=,求的值。教学后记【教学后记】
.科目数学年级八班级授课时间年月日课题16.3二次根式的加减法二次根式的加减法节次“三维”目标(含知识目标、能力目标、情感态度与价值观目标)1、了解同类二次根式的定义。2、能熟练进行二次根式的加减运算。教材分析(含重点、难点、关键点)重点:二次根式加减法的运算。难点:快速准确进行二次根式加减法的运算。教法提示讲练法讨论法教具准备含课件、电教手段等PPT课件教学过程设计(含作业安排)(一)复习回顾1、什么是同类项?2、如何进行整式的加减运算?3、计算:(1)2x-3x+5x(2)(二)提出问题1、什么是同类二次根式?2、判断是否同类二次根式时应注意什么?3、如何进行二次根式的加减运算?(三)自主学习自学课本第10—11页内容,完成下面的题目:1、试观察下列各组式子,哪些是同类二次根式:(1)(2)(3)(4)从中你得到:。2、自学课本例1,例2后,仿例计算:(1)+(2)+2+3(3)3-9+3通过计算归纳:进行二次根式的加减法时,应。(四)合作交流,展示反馈小组交流结果后,再合作计算,看谁做的又对又快!限时6分钟(1)(2)(3)(4)(五)精讲点拨1、判断是否同类二次根式时,一定要先化成最简二次根式后再判断。2、二次根式的加减分三个步骤:①化成最简二次根式;②找出同类二次根式;③合并同类二次根式,不是同类二次根式的不能合并。(六)拓展延伸1、如图所示,面积为48cm2的正方形的四个角是面积为3cm2的小正方形,现将这四个角剪掉,制作一个无盖的长方体盒子,求这个长方体的高和底面边长分别是多少?2、已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值.(七)达标测试:A组1、选择题(1)二次根式:①;②;③;④中,与是同类二次根式的是().A.①和②B.②和③C.①和④D.③和④(2)下列各组二次根式中,是同类二次根式的是().A.与B.与C.与D.与2、计算:(1)(2)B组1、选择:已知最简根式是同类二次根式,则满足条件的a,b的值()A.不存在B.有一组C.有二组D.多于二组2、计算:(1)(2)教学后记【教学后记】
.科目数学年级八班级授课时间年月日课题二次根式的混合运算节次“三维”目标(含知识目标、能力目标、情感态度与价值观目标)熟练应用二次根式的加减乘除法法则及乘法公式进行二次根式的混合运算教材分析(含重点、难点、关键点)重点:熟练进行二次根式的混合运算。难点:混合运算的顺序、乘法公式的综合运用教法提示讲练法讨论法教具准备含课件、电教手段等PPT课件教学过程设计(含作业安排)(一)复习回顾:1、填空(1)整式混合运算的顺序是:。(2)二次根式的乘除法法则是:。(3)二次根式的加减法法则是:。(4)写出已经学过的乘法公式:=1\*GB3①=2\*GB3②2、计算:(1)·· (2)(3)(二)合作交流1、探究计算:(1)()×(2)2、自学课本11页例3后,依照例题探究计算:(1)(2)(三)展示反馈计算:(限时8分钟)(1)(2)(3)(4)(-)(--)(四)精讲点拨整式的运算法则和乘法公式中的字母意义非常广泛,可以是单项式、多项式,也可以代表二次根式,所以整式的运算法则和乘法公式适用于二次根式的运算。(五)拓展延伸同学们,我们以前学过完全平方公式,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=()2,5=()2,下面我们观察:反之,∴∴=-1仿上例,求:(1);(2)你会算吗?(3)若,则m、n与a、b的关系是什么?并说明理由.(六)达标测试:A组1、计算:(1)(2)(3)(a>0,b>0)(4)2、已知,求的值。B组1、计算:(1)(2)2、母亲节到了,为了表达对母亲的爱,小明做了两幅大小不同的正方形卡片送给妈妈,其中一个面积为8cm2,另一个为18cm2,他想如果再用金彩带把卡片的边镶上会更漂亮,他现在有长为50cm的金彩带,请你帮忙算一算,他的金彩带够教学后记【教学后记】
.科目数学年级八班级授课时间年月日课题《二次根式》复习节次“三维”目标(含知识目标、能力目标、情感态度与价值观目标)1、了解二次根式的定义,掌握二次根式有意义的条件和性质。2、熟练进行二次根式的乘除法运算。3、理解同类二次根式的定义,熟练进行二次根式的加减法运算。4、了解最简二次根式的定义,能运用相关性质进行化简二次根式。教材分析(含重点、难点、关键点)重点:二次根式的计算和化简。难点:二次根式的混合运算,正确依据相关性质化简二次根式。教法提示讲练法讨论法教具准备含课件、电教手段等PPT课件教学过程设计(含作业安排)(一)自主复习自学课本第13页“小结”的内容,记住相关知识,完成练习:1.若a>0,a的平方根可表示为___________a的算术平方根可表示________2.当a______时,有意义,当a______时,没有意义。3.4.5.(二)合作交流,展示反馈1、式子成立的条件是什么?2、计算:(1)(2)3.(1)(2)(三)精讲点拨在二次根式的计算、化简及求值等问题中,常运用以下几个式子:(1)(2)(3)(4)(5)(四)拓展延伸1、用三种方法化简解:第一种方法:直接约分第二种方法:分母有理化第三种方法:二次根式的除法2、已知m,m为实数,满足,求6m-3n的值。(五)达标测试:A组1、选择题:(1)化简的结果是()A5B-5C士5D25(2)代数式中,x的取值范围是()ABCD(3)下列各运算,正确的是()ABCD(4)如果是二次根式,化为最简二次根式是()ABCD.以上都不对(5)化简的结果是()2、计算.(1)(2)(3)(4)3、已知求的值B组1、选择:(1),则()Aa,b互为相反数Ba,b互为倒数CDa=b(2)在下列各式中,化简正确的是()ABCD(3)把中根号外的移人根号内得()2、计算:(1)(2)(3)3、归纳与猜想:观察下列各式及其验证过程:(1)按上述两个等式及其验证过程的基本思路,猜想的变化结果并进行验证.(2)针对上述各式反映的规律,写出n(n为任意自然数,且n≥2)表示的等式并进行验证.教学后记【教学后记】
.科目数学年级八班级授课时间年月日课题勾股定理17.1勾股定理(1)节次“三维”目标(含知识目标、能力目标、情感态度与价值观目标)1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。2.培养在实际生活中发现问题总结规律的意识和能力。3.介绍我国古代在勾股定理研究方面所取得的成就,激发爱国热情,勤奋学习。教材分析(含重点、难点、关键点)掌握勾股定理的内容,会用面积法证明勾股定理教法提示讲练法讨论法教具准备含课件、电教手段等PPT课件教学过程设计(含作业安排)一.预习新知(阅读教材第64至66页,并完成预习内容。)1正方形A、B、C的面积有什么数量关系?2以等腰直角三角形两直角边为边长的小正方形的面积和以斜边为边长的大正方形的面积之间有什么关系?归纳:等腰直角三角形三边之间的特殊关系。BCABCA(1)那么一般的直角三角形是否也有这样的特点呢?(2)组织学生小组学习,在方格纸上画出一个直角边分别为3和4的直角三角形,并以其三边为边长向外作三个正方形,并分别计算其面积。(3)通过三个正方形的面积关系,你能说明直角三角形是否具有上述结论吗?(4)对于更一般的情形将如何验证呢?二.课堂展示方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。S正方形=_______________=____________________方法三:以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab.把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.这时四边形ABCD是一个直角梯形,它的面积等于_________________归纳:勾股定理的具体内容是。三.随堂练习1.如图,直角△ABC的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系:;(2)若∠B=30°,则∠B的对边和斜边:;(3)三边之间的关系:2.完成书上P69习题1、2四.课堂检测1.在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则SRt△ABC=________。2.已知在Rt△ABC中,∠B=90°,a、b、c是△ABC的三边,则⑴c=。(已知a、b,求c)⑵a=。(已知b、c,求a)3.直角三角形两直角边长分别为5和12,则它斜边上的高为__________。4.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A、25 B、14 C、7 D、7或255.等腰三角形底边上的高为8,周长为32,则三角形的面积为()A、56 B、48 C、40 D、32五.小结与反思教学后记【教学后记】
.科目数学年级八班级授课时间年月日课题17.1勾股定理(2)节次“三维”目标(含知识目标、能力目标、情感态度与价值观目标)1.会用勾股定理解决简单的实际问题。2.树立数形结合的思想。3.经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法。4.培养思维意识,发展数学理念,体会勾股定理的应用价值。教材分析(含重点、难点、关键点)会用勾股定理解决简单的实际问题教法提示讲练法讨论法教具准备含课件、电教手段等PPT课件教学过程设计(含作业安排)一.预习新知(阅读教材第66至67页,并完成预习内容。)1.①在解决问题时,每个直角三角形需知道几个条件?②直角三角形中哪条边最长?2.在长方形ABCD中,宽AB为1m,长BC为2m,求AC长.问题(1)在长方形ABCD中AB、BC、AC大小关系?(2)一个门框的尺寸如图1所示.①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过?②若薄木板长3米,宽1.5米呢?③若薄木板长3米,宽2.2米呢?为什么?BCBC1m2mA图1二.课堂展示例:如图2,一个3米长的梯子AB,斜着靠在竖直的墙AO上,这时AO的距离为2.5米.①求梯子的底端B距墙角O多少米?②如果梯的顶端A沿墙下滑0.5米至C.OBDCCOBDCCACAOBOD、图2三.随堂练习1.书上P68练习1、22.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是米。3.如图,山坡上两株树木之间的坡面距离是米,则这两株树之间的垂直距离是米,水平距离是米。3题图1题图2题图四.课堂检测1.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是。2.如图,原计划从A地经C地到B地修建一条高速公路,后因技术攻关,可以打隧道由A地到B地直接修建,已知高速公路一公里造价为300万元,隧道总长为2公里,隧道造价为500万元,AC=80公里,BC=60公里,则改建后可省工程费用是多少?3.如图,欲测量松花江的宽度,沿江岸取B、C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为。4.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为米。5.一根32厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=16厘米,且RP⊥PQ,则RQ=厘米。图3S1S2S3图46.如图3,分别以Rt△ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,容易得出S1、图3S1S2S3图4变式:书上P71-11题如图4.五.小结与反思教学后记【教学后记】
.科目数学年级八班级授课时间年月日课题17.1勾股定理(3)节次“三维”目标(含知识目标、能力目标、情感态度与价值观目标)1、能利用勾股定理,根据已知直角三角形的两边长求第三条边长;并在数轴上表示无理数。2、体会数与形的密切联系,增强应用意识,提高运用勾股定理解决问题的能力。3、培养数形结合的数学思想,并积极参与交流,并积极发表意见。教材分析(含重点、难点、关键点)、能利用勾股定理,根据已知直角三角形的两边长求第三条边长;并在数轴上表示无理数。教法提示讲练法讨论法教具准备含课件、电教手段等PPT课件教学过程设计(含作业安排)一.预习新知(阅读教材第67至68页,并完成预习内容。)1.探究:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示的点吗?2.分析:如果能画出长为_______的线段,就能在数轴上画出表示的点。容易知道,长为的线段是两条直角边都为______的直角边的斜边。长为的线段能是直角边为正整数的直角三角形的斜边吗?利用勾股定理,可以发现,长为的线段是直角边为正整数_____、______的直角三角形的斜边。3.作法:在数轴上找到点A,使OA=_____,作直线垂直于OA,在上取点B,使AB=_____,以原点O为圆心,以OB为半径作弧,弧与数轴的交点C即为表示的点。4.在数轴上画出表示的点?(尺规作图)二.课堂展示例1已知直角三角形的两边长分别为5和12,求第三边。例2已知:如图,等边△ABC的边长是6cm。⑴求等边△ABC的高。⑵求S△ABC。三.随堂练习1.完成书上P71第9题2.填空题⑴在Rt△ABC,∠C=90°,a=8,b=15,则c=。⑵在Rt△ABC,∠B=90°,a=3,b=4,则c=。⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a=,b=。(4)已知直角三角形的两边长分别为3cm和5cm,,则第三边长为。2.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形面积。四.课堂检测1.已知直角三角形中30°角所对的直角边长是cm,则另一条直角边的长是()A.4cmB.cmC.6cmD.cm2.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42B.32C.42或32D.37或333.一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动()A.9分米B.15分米C.5分米D.8分米4.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.5.等腰△ABC的腰长AB=10cm,底BC为16cm,底边上的高为,面积为.6.一个直角三角形的三边为三个连续偶数,则它的三边长分别为.7.已知:如图,四边形ABCD中,AD∥BC,AD⊥DC,AB⊥AC,∠B=60°,CD=1cm,求BC的长。五.小结与反思:作业:教学后记【教学后记】
.科目数学年级八班级授课时间年月日课题17.2勾股定理的逆定理(一)节次“三维”目标(含知识目标、能力目标、情感态度与价值观目标)1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。2.探究勾股定理的逆定理的证明方法。3.理解原命题、逆命题、逆定理的概念及关系教材分析(含重点、难点、关键点)勾股定理的逆定理的证明方法教法提示讲练法讨论法教具准备含课件、电教手段等PPT课件教学过程设计(含作业安排)一.预习新知(阅读教材P73—75,完成课前预习)1.三边长度分别为3cm、4cm、5cm的三角形与以3cm、4cm为直角边的直角三角形之间有什么关系?你是怎样得到的?2.你能证明以6cm、8cm、10cm为三边长的三角形是直角三角形吗?3.如图18.2-2,若△ABC的三边长、、满足,试证△ABC是直角三角形,请简要地写出证明过程.图18.2-2图18.2-24.此定理与勾股定理之间有怎样的关系?(1)什么叫互为逆命题(2)什么叫互为逆定理(3)任何一个命题都有但任何一个定理未必都有_5.说出下列命题的逆命题。这些命题的逆命题成立吗?两直线平行,内错角相等;如果两个实数相等,那么它们的绝对值相等;全等三角形的对应角相等;角的内部到角的两边距离相等的点在角的平分线上。二.课堂展示例1:判断由线段、、组成的三角形是不是直角三角形:(1);(2).(3);(4);三.随堂练习1.完成书上P75练习1、22.如果三条线段长a,b,c满足,这三条线段组成的三角形是不是直角三角形?为什么?3.A,B,C三地的两两距离如图所示,A地在B地的正东方向,C地在B地的什么方向?4.思考:我们知道3、4、5是一组勾股数,那么3k、4k、5k(k是正整数)也是一组勾股数吗?一般地,如果a、b、c是一组勾股数,那么ak、bk、ck(k是正整数)也是一组勾股数吗?四.课堂检测1..一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为多少米?此三角形的形状为?3.已知:如图,在△ABC中,CD是AB边上的高,且CD2=AD·BD。求证:△ABC是直角三角形。教学后记【教学后记】科目数学年级八班级授课时间年月日课题17.2勾股定理逆定理(2)节次“三维”目标(含知识目标、能力目标、情感态度与价值观目标)1.进一步掌握勾股定理的逆定理,并会应用勾股定理的逆定理判断一个三角形是否是直角三角形,能够理解勾股定理及其逆定理的区别与联系,掌握它们的应用范围。教材分析(含重点、难点、关键点)会应用勾股定理的逆定理判断一个三角形是否是直角三角形教法提示讲练法讨论法教具准备含课件、电教手段等PPT课件教学过程设计(含作业安排)一.预习新知已知:如图,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3。求:四边形ABCD的面积。归纳:求不规则图形的面积时,要把不规则图形二.课堂展示例1.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?图18.图18.2-3例2.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。三.随堂练习1.完成书上P76练习32.一个三角形三边之比为3:4:5,则这个三角形三边上的高值比为A3:4:5B5:4:3C20:15:12D10:8:23.如果△ABC的三边a,b,c满足关系式+(b-18)2+=0则△ABC是_______三角形。四.课堂检测1.若△ABC的三边a、b、c,满足(a-b)(a2+b2-c2)=0,则△ABC是()A.等腰三角形;B.直角三角形;C.等腰三角形或直角三角形;D.等腰直角三角形。2.若△ABC的三边a、b、c,满足a:b:c=1:1:,试判断△ABC的形状。3.已知:如图,四边形ABCD,AB=1,BC=,CD=,AD=3,且AB⊥BC。求:四边形ABCD的面积。4.小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是。5.一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。6.已知△ABC的三边为a、b、c,且a+b=4,ab=1,c=,试判定△ABC的形状。7.如图,在正方形ABCD中,F为DC的中点,E为BC上一点且EC=BC,求证:∠EFA=90。.教学后记【教学后记】
.科目数学年级八班级授课时间年月日课题勾股定理复习(1)节次“三维”目标(含知识目标、能力目标、情感态度与价值观目标)1.理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边.2.勾股定理的应用.3.会运用勾股定理的逆定理,判断直角三角形.教材分析(含重点、难点、关键点)勾股定理的应用教法提示讲练法讨论法教具准备含课件、电教手段等PPT课件教学过程设计(含作业安排)一.复习回顾在本章中,我们探索了直角三角形的三边关系,并在此基础上得到了勾股定理,并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;本章后半部分学习了勾股定理的逆定理以及它的应用.其知识结构如下:1.勾股定理:(1)直角三角形两直角边的______和等于_______的平方.就是说,对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有:————————————.这就是勾股定理.(2)勾股定理揭示了直角三角形___之间的数量关系,是解决有关线段计算问题的重要依据.勾股定理的探索与验证,一般采用“构造法”.通过构造几何图形,并计算图形面积得出一个等式,从而得出或验证勾股定理.2.勾股定理逆定理“若三角形的两条边的平方和等于第三边的平方,则这个三角形为________.”这一命题是勾股定理的逆定理.它可以帮助我们判断三角形的形状.为根据边的关系解决角的有关问题提供了新的方法.定理的证明采用了构造法.利用已知三角形的边a,b,c(a2+b2=c2),先构造一个直角边为a,b的直角三角形,由勾股定理证明第三边为c,进而通过“SSS”证明两个三角形全等,证明定理成立.3.勾股定理的作用:(1)已知直角三角形的两边,求第三边;(2)在数轴上作出表示(n为正整数)的点.勾股定理的逆定理是用来判定一个三角形是否是直角三角形的.勾股定理的逆定理也可用来证明两直线是否垂直,勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,还可以判定哪一个角是直角,从而产生了证明两直线互相垂直的新方法:利用勾股定理的逆定理,通过计算来证明,体现了数形结合的思想.(3)三角形的三边分别为a、b、c,其中c为最大边,若,则三角形是直角三角形;若,则三角形是锐角三角形;若,则三角形是钝角三角形.所以使用勾股定理的逆定理时首先要确定三角形的最大边.二.课堂展示例1:如果一个直角三角形的两条边长分别是6cm和8cm,那么这个三角形的周长和面积分别是多少?例2:如图,在四边形ABCD中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD⊥BD.三.随堂练习1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25B.3,4,5C.3,4,5D.4,7,82.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的()A.1倍B.2倍C.3倍D.4倍3.三个正方形的面积如图1,正方形A的面积为()A.6B.36C.64D.84.直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为()A.6cmB.8.5cmC.cmD.cm图1A100645.在△ABC中,三条边的长分别为a,b,c,a=n2-1,b=2n,c=n2+1(图1A10064四.课堂检测1.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距()A.50cmB.100cmC.140cmD.80cm2.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为()A.8cmB.10cmC.12cmD.14cm3.在△ABC中,∠C=90°,若a=5,b=12,则c=___4.等腰△ABC的面积为12cm2,底上的高AD=3cm,则它的周长为___.5.等边△ABC的高为3cm,以AB为边的正方形面积为___.6.一个三角形的三边的比为5∶12∶13,它的周长为60cm,则它的面积是___7.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线长,已知门宽4尺.求竹竿高与门高.8.如图3,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8m处,已知旗杆原长16m,你能求出旗杆在离底部什么位置断裂的吗?8m8m图3教学后记【教学后记】科目数学年级八班级授课时间年月日课题勾股定理复习(2)节次“三维”目标(含知识目标、能力目标、情感态度与价值观目标)1.掌握直角三角形的边、角之间所存在的关系,熟练应用直角三角形的勾股定理和逆定理来解决实际问题.2.经历反思本单元知识结构的过程,理解和领会勾股定理和逆定理.3.熟悉勾股定理的历史,进一步了解我国古代数学的伟大成就,激发爱国主义思想,培养良好的学习态度.教材分析(含重点、难点、关键点)重点:掌握勾股定理以及逆定理的应用.难点:应用勾股定理以及逆定理教法提示讲练法讨论法教具准备含课件、电教手段等PPT课件教学过程设计(含作业安排)考点一、已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为______.2.已知直角三角形的两边长为3、2,则另一条边长是________________.3.在数轴上作出表示的点.4.已知,如图在ΔABC中,AB=BC=CA=2cm,AD是边BC上的高.求①AD的长;②ΔABC的面积.考点二、利用列方程求线段的长ADEBC1.如图,铁路上A,B两点相距25km,C,D为两村庄,DAADEBC2.如图,某学校(A点)与公路(直线L)的距离为300米,又与公路车站(D点)的距离为500米,现要在公路上建一个小商店(C点),使之与该校A及车站D的距离相等,求商店与车站之间的距离.考点三、判别一个三角形是否是直角三角形1.分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,其中能够成直角三角形的有2.若三角形的三别是a2+b2,2ab,a2-b2(a>b>0),则这个三角形是.3.如图1,在△ABC中,AD是高,且,求证:△ABC为直角三角形。考点四、灵活变通1.在Rt△ABC中,a,b,c分别是三条边,∠B=90°,已知a=6,b=10,则边长c=682.直角三角形中,以直角边为边长的两个正方形的面积为7,8,则以斜边为边长的正方形的面积为_________.683.如图一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁爬行,要从A点爬到B点,则最少要爬行cm4.如图:带阴影部分的半圆的面积是(取3)5.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长是6.如图:在一个高6米,长10米的楼梯表面铺地毯,则该地毯的长度至少是米。考点五、能力提升1.已知:如图,△ABC中,AB>AC,AD是BC边上的高.求证:AB2-AC2=BC(BD-DC).2.如图,四边形ABCD中,F为DC的中点,E为BC上一点,且.你能说明∠AFE是直角吗?3.如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?三.随堂检测1.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为(
).
A.1:1:1
B.1:1:2
C.1:2:3
D.1:4:12.下列各组线段中,能够组成直角三角形的是(
).
A.6,7,8
B.5,6,7
C.4,5,6
D.3,4,53.若等边△ABC的边长为2cm,那么△ABC的面积为(
).A.cm2
B.2cm2
C.3cm2
D.4cm24.直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为()A.6cmB.8.5cmC.30/13cmD.60/13cm5.有两棵树,一棵高6米,另一棵高3米,两树相距4米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了___米.6.一座桥横跨一江,桥长12m,一般小船自桥北头出发,向正南方驶去,因水流原因到达南岸以后,发现已偏离桥南头5m,则小船实际行驶___m.7.一个三角形的三边的比为5∶12∶13,它的周长为60cm,则它的面积是___.8.已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是.9.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线长,已知门宽4尺.求竹竿高与门高.OB′图1BAA′10.如图1所示,梯子AB靠在墙上,OB′图1BAA′11.已知:如图△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.求:BD的长.四.小结与反思教学后记【教学后记】
.科目数学年级八班级授课时间年月日课题第18章平行四边形18.1.1平行四边形及其性质(一)节次“三维”目标(含知识目标、能力目标、情感态度与价值观目标)理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.教材分析(含重点、难点、关键点)学习重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.学习难点:运用平行四边形的性质进行有关的论证和计算教法提示讲练法讨论法教具准备含课件、电教手段等PPT课件教学过程设计(含作业安排)一、自主预习(10分钟)1.由___条线段首尾顺次连接组成的多边形叫四边形;四边形有_条边,___个角,四边形的内角和等于_____度;2.如图AB与BC叫___边,AB与CD叫___边;∠A与∠B叫___角,∠D与∠B叫___角;3多边形中不相邻顶点的连线叫对角线,如图四边形ABCD中对角线有___条,它们是______自学课本P83~P84,1.有两组对边__________________的四边形叫平形四边形,平行四边形用“______”表示,平行四边形ABCD记作__________。2.如图□ABCD中,对边有______组,分别是___________________,对角有_____组,分别是_________________,对角线有______条,它们是___________________。你能归纳ABCD的边、角各有什么关系吗?并证明你的结论。二、合作解疑(25分钟)如图,小明用一根36长的绳子围成了一个平行四边形的场地,其中一条边AB长为8,其他三条边各长多少?个平行四边形的一个外角是38°,这个平行四边形的各个内角的度数分别是:(3)ABCD有一个内角等于40°,则另外三个内角分别为:(4)平行四边形的周长为50cm,两邻边之比为2:3,则两邻边分别为:A.1︰2︰3︰4B.3︰4︰4︰3C.3︰3︰4︰4D.3︰4︰3︰42.ABCD的周长为40cm,△ABC的周长为27cm,AC的长为()A.13cmB.3cmC.7cmD.11.5cm三、综合应用拓展1.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.三、当堂检测(10分钟)1.填空:(1)在ABCD中,∠A=,则∠B=度,∠C=度,∠D=度.1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD记作__________。2.平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______;平行四边形的对角线______;平行四边形的面积=底边长×______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.6题图7.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.7题图8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.二、选择题9.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成立的是().(A)AF=EF(B)AB=EF(C)AE=AF(D)AF=BE10.如图,下列推理不正确的是().(A)∵AB∥CD∴∠ABC+∠C=180°(B)∵∠1=∠2∴AD∥BC(C)∵AD∥BC∴∠3=∠4(D)∵∠A+∠ADC=180°∴AB∥CD11.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为().(A)5 (B)6(C)8 (D)121.□ABCD中,两邻角之比为1∶2,则它的四个内角的度数分别是____________.2.□ABCD的周长是28cm,△ABC的周长是22cm,则AC的长是__________.3.如图,在□ABCD中,M、N是对角线BD上的两点,BN=DM,请判断AM与CN有怎样的数量关系,并说明理由.它们的位置关系如何呢?教学后记【教学后记】
.科目数学年级八班级授课时间年月日课题18.1.1平行四边形的性质2节次“三维”目标(含知识目标、能力目标、情感态度与价值观目标)理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质. 能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题教材分析(含重点、难点、关键点)学习重点:平行四边形对角线互相平分的性质,以及性质的应用.学习难点:综合运用平行四边形的性质进行有关的论证和计算.教法提示讲练法讨论法教具准备含课件、电教手段等PPT课件教学过程设计(含作业安排)一、自主预习(10分钟)想一想:1.平行四边形是一个特殊的图形,它的边、角各有什么性质?2.平行四边形除了边、角的性质外?还有没有其他的性质? 探一探按课本85页的“探究”方法进行操作,并画出这两个平行四边形的对角线.实验后思考:(1)从这个实验中你是否发现平行四边形的边、角之间的关系?这与前面的结论一致吗?(2)线段OA与OC,OB与OD有什么关系(如下图)?由此你能发现平行四边形的对角线有什么性质?2.猜一猜平行四边形的对角线有什么性质? 3.证一证4.结论平行四边形是中心对称图形.二、合作解疑(25分钟)1.在□ABCD中,AC、BD交于点O,已知AB=8cm,BC=6cm,△AOB的周长是18cm,那么△AOD的周长是_____________.2.□ABCD的对角线交于点O,S△AOB=2cm2,则S□ABCD=__________.3.□AAB=______cm,BC=_______cm.4.□ABCD中,对角线AC和BD交于点O,若AC=8,AB=6,BD=m,那么m的取值范围是____________.5.□ABCD中,E、F在AC上,四边形DEBF是平行四边形.求证:AE=CF.6.如图,田村有一口四边形的池塘,在它的四角A、B、C、D处均有一棵大桃树.田村准备开挖养鱼,想使池塘的面积扩大一倍,并要求扩建后的池塘成平行四边形形状,请问田村能否实现这一设想?若能,画出图形,说明理由.综合应用拓展已知:如下图,ABCD的对角AC,BD交与点O.E,F分别是OA、OC的中点。FEODCABFEODCAB三、限时检测(10分钟)1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______.2.□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是______.3.平行四边形周长是40cm,则每条对角线长不能超过______cm.4.如图,在□ABCD中,AE、AF分别垂直于BC、CD,垂足为E、F,若∠EAF=30°,AB=6,AD=10,则CD=______;AB与CD的距离为______;AD与BC的距离为______;∠D=______.5.□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=______,BC=______.6.在□ABCD中,AC与BD交于O,若OA=3x,AC=4x+12,则OC的长为______.7.在□ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=______,AB=______.8.在□ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则□ABCD的面积为______.二、选择题9.有下列说法:①平行四边形具有四边形的所有性质;②平行四边形是中心对称图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是().(A)①②④ (B)①③④ (C)①②③ (D)①②③④10.平行四边形一边长12cm,那么它的两条对角线的长度可能是().(A)8cm和16cm (B)10cm和16cm (C)8cm和14cm (D)8cm和12cm11.以不共线的三点A、B、C为顶点的平行四边形共有()个.(A)1 (B)2 (C)3 (D)无数12.在□ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别是AB和CD的五等分点,点B1、B2、和D1、D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则□ABCD的面积为()(A)2 (B)(C) (D)1513.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n个图中平行四边形的个数是()……(1)(2)(3)(A)3n (B)3n(n+1) (C)6n (D)6n(n+1教学后记【教学后记】
.科目数学年级八班级授课时间年月日课题18.1.2平行四边形的判定1节次“三维”目标(含知识目标、能力目标、情感态度与价值观目标)1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题教材分析(含重点、难点、关键点)学习重点:平行四边形的判定方法及应用.学习难点:平行四边形的判定定理与性质定理的灵活应用教法提示讲练法讨论法教具准备含课件、电教手段等PPT课件教学过程设计(含作业安排)一、自主预习(10分钟)【活动一】提出问题:1.平行四边形的定义是什么?它有什么作用?2.平行四边形具有哪些性质?3.平行四边形的对边相等、对角相等、对角线互相平分,那么反过来,对边相等或对角相等或对角线互相平分的四边形是不是平行四边形呢?【活动二】★探究:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1两组对边分别相等的四边形是平行四边形。平行四边形判定方法2对角线互相平分的四边形是平行四边形。二、合作解疑(25分钟)证一证平行四边形判定方法1两组对边分别相等的四边形是平行四边形。证明:(画出图形)平行四边形判定方法2对角线互相平分的四边形是平行四边形。证明:(画出图形)例1(教材P87例3)已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.(你还有其它的证明方法吗?比较一下,哪种证明方法简单.)综合应用拓展已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,求证:BE=CF三、限时检测(10分钟)1.如图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC=____cm,CD=____cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=___cm,DO=___cm时,四边形ABCD为平行四边形.2.已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.3.如图:由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察,分析发现:①第4个图形中平行四边形的个数为_____.②第8个图形中平行四边形的个数为___。课后作业已知:四边形ABCD中,AD∥BC,要使四边形ABCD为平行四边形,需要增加条件.(只需填上一个你认为正确的即可).6.如图所示,ABCD中,BE⊥CD,BF⊥AD,垂足分别为E、F,∠EBF=60°AF=3,CE=4.5,则∠C=,第7题图AB=,BC=.第7题图7.如图所示,在ABCD中,F分别是对角线BD上的两点,且BE=DF,要证明四边形AECF是平行四边形,最简单的方法是根据来证明.8.将两个全等的不等边三角形拼成平行四边形,可拼成的不同的平行四边形的个数为______.三、解答题第9题图9.已知:如图所示,在ABCD中,E、F分别为AB、CD的中点,求证四边形AECF是平行四边形.第9题图第10题图10.如图所示,BD是ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF为平行四边形.第10题图1.已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形。(用两种方法)2.已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN.教学后记【教学后记】
.科目数学年级八班级授课时间年月日课题18.1.2平行四边形的判定2节次“三维”目标(含知识目标、能力目标、情感态度与价值观目标)掌握用一组对边平行且相等来判定平行四边形的方法.会综合运用平行四边形的四种判定方法和性质来证明问题.教材分析(含重点、难点、关键点)学习重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.学习难点:平行四边形的判定定理与性质定理的综合应用教法提示讲练法讨论法教具准备含课件、电教手段等PPT课件教学过程设计(含作业安排)一、自主预习(10分钟)平行四边形的判定方法有那些?取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?1.一组对边平行且相等的四边形是平行四边形.证明:一组对边平行且相等的四边形是平行四边形.已知:如图,在中,AB=CDAB∥CD,求证:.证明:2.几何语言表述:∵AB=CD,AB∥CD∴四边形ABCD是平行四边形.二、合作解疑(25分钟)已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.综合应用拓展如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.三、限时检测(10分钟)1.如图,△ABC是等边三角形,P是其内任意一点,PD∥AB,PE∥BC,DE∥AC,若△ABC周长为8,则PD+PE+PF=。2.四边形ABCD是平行四边形,BE平分∠ABC交AD于E,DF平分∠ADC交BC于点F,求证:四边形BFDE是平行四边形。3.已知□ABCD中,E、F分别是AD、BC的中点,AF与EB交于G,CE与DF交于H,求证:四边形EGFH为平行四边形。4.如图,在四边形ABCD中,AB=6,BC=8,∠A=120°,∠B=60°,∠BCD=150°,求AD的长。课后作业6.能判定一个四边形是平行四边形的条件是().(A)一组对边平行,另一组对边相等 (B)一组对边平行,一组对角互补(C)一组对角相等,一组邻角互补 (D)一组对角相等,另一组对角互补7.能判定四边形ABCD是平行四边形的题设是().(A)AD=BC,AB∥CD (B)∠A=∠B,∠C=∠D(C)AB=BC,AD=DC (D)AB∥CD,CD=AB8.能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为().(A)1∶2∶3∶4 (B)1∶4∶2∶3(C)1∶2∶2∶1 (D)1∶2∶1∶29.如图,E、F分别是□ABCD的边AB、CD的中点,则图中平行四边形的个数共有().(A)2个 (B)3个(C)4个 (D)5个10.□ABCD的对角线的交点在坐标原点,且AD平行于x轴,若A点坐标为(-1,2),则C点的坐标为().(A)(1,-2) (B)(2,-1) (C)(1,-3) (D)(2,-3)11.如图,□ABCD中,对角线AC、BD交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有().(A)1条 (B)2条(C)3条 (D)4条综合、运用、诊断一、解答题12.已知:如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025“阴阳合同”的处理原则
- 2025翡翠首饰买卖合同模板
- 2025国际石油工程建设项目合同(中英文对照)
- 2025食品采购合同
- 2025关于软件升级的服务合同范本
- 2025实习生合同协议书
- 2025保险公司担保合同样本2
- 2025年商业地产租赁合同
- 2025年增亮膜项目合作计划书
- 2025年地质勘查专用设备项目建议书
- 期中模拟卷(新疆专用)-2024-2025学年八年级英语下学期核心素养素质调研模拟练习试题(考试版)A4
- 甲状旁腺切除术后的护理措施
- 2024慢性鼻窦炎诊断和治疗指南解读课件
- (T8联考)2025届高三部分重点中学3月联合测评生物试卷(含答案详解)河北版
- 员工入职申请表(完整版)
- T-GDEIIA 56-2024 垂直起降低空航空器起降场基础设施配置技术要求
- 整本书阅读《林海雪原》【知识精研】六年级语文下册 (统编版五四制2024)
- 9《我的战友邱少云》说课稿-2024-2025学年六年级语文上册统编版
- 亚朵酒店前台培训
- 大学假期安全主题班会课件
- 创业培训讲师手册
评论
0/150
提交评论