初二数学知识点全总结(2篇)_第1页
初二数学知识点全总结(2篇)_第2页
初二数学知识点全总结(2篇)_第3页
初二数学知识点全总结(2篇)_第4页
初二数学知识点全总结(2篇)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第25页共25页初二数学知识点全总结第一章勾股定理1、探索勾股定理①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c22、一定是直角三角形吗①如果三角形的三边长abc满足a2+b2=c2,那么这个三角形一定是直角三角形3、勾股定理的应用第二章实数1、认识无理数①有理数:总是可以用有限小数和无限循环小数表示②无理数:无限不循环小数2、平方根①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根②特别地,我们规定:0的算数平方根是0③平方根:一般地,如果一个数x的平方等于a,即x2=a。那么这个数x就叫做a的平方根,也叫做二次方根④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数3、立方根①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数4、估算①估算,一般结果是相对复杂的小数,估算有精确位数5、用计算机开平方6、实数①实数:有理数和无理数的统称②实数也可以分为正实数、0、负实数③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大7、二次根式①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数②=(a≥0,b≥0),=(a≥0,b>0)③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式第三章位置与坐标1、确定位置①在平面内,确定一个物体的位置一般需要两个数据2、平面直角坐标系①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限⑤在直角坐标系中,对于平面上任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应3、轴对称与坐标变化①关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数第四章一次函数1、函数①一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数其中x是自变量③对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a的函数值2、一次函数与正比例函数①若两个变量x,y间的对应关系可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x的一次函数,特别的,当b=0时,称y是x的正比例函数3、一次函数的图像①正比例函数y=kx的图像是一条经过原点(0,0)的直线。因此,画正比例函数图像是,只要再确定一点,过这个点与原点画直线就可以了②在正比例函数y=kx中,当k>0时,y的值随着x值的增大而减小;当k<0时,y的值随着x的值增大而减小③一次函数y=kx+b的图像是一条直线,因此画一次函数图像时,只要确定两个点,再过这两点画直线就可以了。一次函数y=kx+b的图像也称为直线y=kx+b④一次函数y=kx+b的图像经过点(0,b)。当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小4、一次函数的应用①一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解,从图像上看,一次函数y=kx+b的图像与x轴交点的横坐标就是方程kx+b=0第五章二元一次方程组1、认识二元一次方程组①含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程②共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组③二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解2、求解二元一次方程组①将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法②通过两式子加减,消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法3、应用二元一次方程组①鸡兔同笼4、应用二元一次方程组①增减收支5、应用二元一次方程组①里程碑上的数6、二元一次方程组与一次函数①一般地,以一个二元一次方程的解为坐标的点组成的图像与相应的一次函数的图像相同,是一条直线②一般地,从图形的角度看,确定两条直线相交点的坐标,相当于求相应的二元一次方程组的解,解一个二元一次方程组相当于确定相应两条直线交点的坐标7、用二元一次方程组确定一次函数表达式①先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法。8、三元一次方程组①在一个方程组中,各个式子都含有三个未知数,并且所含有未知数的项的次数都是1,这样的方程叫做三元一次方程②像这样,共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组③三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解。第六章数据的分析1、平均数①一般地,对于n个数x1x2xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数2、中位数与众数①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数②一组数据中出现次数最多的那个数据叫做这组数据的众数③平均数、中位数和众数都是描述数据集中趋势的统计量④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息⑥各个数据重复次数大致相等时,众数往往没有特别意义3、从统计图分析数据的集中趋势4、数据的离散程度①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中最大数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量②数学上,数据的离散程度还可以用方差或标准差刻画③方差是各个数据与平均数差的平方的平均数④其中是x1x2xn平均数,s2是方差,而标准差就是方差的算术平方根⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。第七章平行线的证明1、为什么要证明①实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明2、定义与命题①证明时,为了交流方便,必须对某些名称和术语形成共同的认识,为此,就要对名称和术语的含义加以描述,做出明确的规定,也就是给它们的定义③一般地,每个命题都由条件和结论两部分组成。条件是已知的选项,结论是已知选项推出的事项。命题通常可以写成“如果那么”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论④正确的命题称为真命题,不正确的命题称为假命题⑤要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例⑥欧几里得在编写《原本》时,挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据。其中数学名词称为原名,公认的真命题称为公理,除了公理外,其他命题的真假都需要通过演绎推理的方法进行判断⑦演绎推理的过程称为证明,经过证明的真命题称为定理,每个定理都只能用公理、定义和已经证明为真的命题来证明a.本套教科书选用九条基本事实作为证明的出发点和依据,其中八条是:两点确定一条直线b.两点之间线段最短c.同一平面内,过一点有且只有一条直线与已知直线垂直d.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简述为:同位角相等,两直线平行)e.过直线外一点有且只有一条直线与这条直线平行f.两边及其夹角分别相等的两个三角形全等g.两角及其夹边分别相等的两个三角形全等h.三边分别相等的两个三角形全等⑧此外,数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据⑨定理:同角(等角)的补角相等同角(等角)的余角相等三角形的任意两边之和大于第三边对顶角相等3、平行线的判定①定理:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简述为:内错角相等,两直线平行②定理:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简述为:同旁内角互补,两直线平行。4、平行线的性质①定理:两条平行直线被第三条直线所截,同位角相等。简述为:两直线平行,同位角相等②定理:两条平行直线被第三条直线所截,内错角相等。简述为:两直线平行,内错角相等③定理:两条平行直线被第三条直线所截,同旁内角互补。简述为:两直线平行,同旁内角互补④定理:平行于同一条直线的两条直线平行5、三角形内角和定理①三角形内角和定理:三角形的内角和等于180°②定理:三角形的一个外角等于和它不相邻的两个内角的和定理:三角形的一个外角大于任何一个和它不相邻的内角我们通过三角形的内角和定理直接推导出两个新定理。像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论,推论可以当定理使用。初二数学知识点全总结(二)第一章勾股定理1、探索勾股定理①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c22、一定是直角三角形吗①如果三角形的三边长abc满足a2+b2=c2,那么这个三角形一定是直角三角形3、勾股定理的应用第二章实数1、认识无理数①有理数:总是可以用有限小数和无限循环小数表示②无理数:无限不循环小数2、平方根①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根②特别地,我们规定:0的算数平方根是0③平方根:一般地,如果一个数x的平方等于a,即x2=a。那么这个数x就叫做a的平方根,也叫做二次方根④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数3、立方根①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数4、估算①估算,一般结果是相对复杂的小数,估算有精确位数5、用计算机开平方6、实数①实数:有理数和无理数的统称②实数也可以分为正实数、0、负实数③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大7、二次根式①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数②=(a≥0,b≥0),=(a≥0,b>0)③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式第三章位置与坐标1、确定位置①在平面内,确定一个物体的位置一般需要两个数据2、平面直角坐标系①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限⑤在直角坐标系中,对于平面上任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应3、轴对称与坐标变化①关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数第四章一次函数1、函数①一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数其中x是自变量③对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a的函数值2、一次函数与正比例函数①若两个变量x,y间的对应关系可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x的一次函数,特别的,当b=0时,称y是x的正比例函数3、一次函数的图像①正比例函数y=kx的图像是一条经过原点(0,0)的直线。因此,画正比例函数图像是,只要再确定一点,过这个点与原点画直线就可以了②在正比例函数y=kx中,当k>0时,y的值随着x值的增大而减小;当k<0时,y的值随着x的值增大而减小③一次函数y=kx+b的图像是一条直线,因此画一次函数图像时,只要确定两个点,再过这两点画直线就可以了。一次函数y=kx+b的图像也称为直线y=kx+b④一次函数y=kx+b的图像经过点(0,b)。当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小4、一次函数的应用①一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解,从图像上看,一次函数y=kx+b的图像与x轴交点的横坐标就是方程kx+b=0第五章二元一次方程组1、认识二元一次方程组①含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程②共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组③二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解2、求解二元一次方程组①将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法②通过两式子加减,消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法3、应用二元一次方程组①鸡兔同笼4、应用二元一次方程组①增减收支5、应用二元一次方程组①里程碑上的数6、二元一次方程组与一次函数①一般地,以一个二元一次方程的解为坐标的点组成的图像与相应的一次函数的图像相同,是一条直线②一般地,从图形的角度看,确定两条直线相交点的坐标,相当于求相应的二元一次方程组的解,解一个二元一次方程组相当于确定相应两条直线交点的坐标7、用二元一次方程组确定一次函数表达式①先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法。8、三元一次方程组①在一个方程组中,各个式子都含有三个未知数,并且所含有未知数的项的次数都是1,这样的方程叫做三元一次方程②像这样,共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组③三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解。第六章数据的分析1、平均数①一般地,对于n个数x1x2xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数2、中位数与众数①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数②一组数据中出现次数最多的那个数据叫做这组数据的众数③平均数、中位数和众数都是描述数据集中趋势的统计量④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息⑥各个数据重复次数大致相等时,众数往往没有特别意义3、从统计图分析数据的集中趋势4、数据的离散程度①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中最大数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量②数学上,数据的离散程度还可以用方差或标准差刻画③方差是各个数据与平均数差的平方的平均数④其中是x1x2xn平均数,s2是方差,而标准差就是方差的算术平方根⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。第七章平行线的证明1、为什么要证明①实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明2、定义与命题①证明时,为了交流方便,必须对某些名称和术语形成共同的认识,为此,就要对名称和术语的含义加以描述,做出明确的规定,也就是给它们的定义③一般地,每个命题都由条件和结论两部分组成。条件是已知的选项,结论是已知选项推出的事项。命题通常可以写成“如果那么”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论④正确的命题称为真命题,不正确的命题称为假命题⑤要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例⑥欧几里得在编写《原本》时,挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据。其中数学名词称为原名,公认的真命题称为公理,除了公理外,其他命题的真假都需要通过演绎推理的方法进行判断⑦演绎推理的过程称为证明,经过证明的真命题称为定理,每个定理都只能用公理、定义和已经证明为真的命题来证明a.本套教科书选用九条基本事实作为证明的出发点和依据,其中八条是:两点确定一条直线b.两点之间线段最短c.同一平面内,过一点有且只有一条直线与已知直线垂直d.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简述为:同位角相等,两直线平行)e.过直线外一点有且只有一条直线与这条直线平行f.两边及其夹角分别相等的两个三角形全等g.两角及其夹边分别相等的两个三角形全等h.三边分别相等的两个三角形全等⑧此外,数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据⑨定理:同角(等角)的补角相等同角(等角)的余角相等三角形的任意两边之和大于第三边对顶角相等3、平行线的判定①定理:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简述为:内错角相等,两直线平行②定理:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简述为:同旁内角互补,两直线平行。4、平行线的性质①定理:两条平行直线被第三条直线所截,同位角相等。简述为:两直线平行,同位角相等②定理:两条平行直线被第三条直线所截,内错角相等。简述为:两直线平行,内错角相等③定理:两条平行直线被第三条直线所截,同旁内角互补。简述为:两直线平行,同旁内角互补④定理:平行于同一条直线的两条直线平行5、三角形内角和定理①三角形内角和定理:三角形的内角和等于180°②定理:三角形的一个外角等于和它不相邻的两个内角的和定理:三角形的一个外角大于任何一个和它不相邻的内角我们通过三角形的内角和定理直接推导出两个新定理。像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论,推论可以当定理使用。初二数学知识点梳理一、实数的概念及分类1、实数的分类一是分类是:正数、负数、0;另一种分类是:有理数、无理数将两种分类进行组合:负有理数,负无理数,0,正有理数,正无理数2、无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。2、绝对值3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。初二数学知识点归纳第十六章分式一、定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。二、分式基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。三、分式计算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。分式除法法则:分式除以分式,把除式的分子、分母颠倒置后,与被除式相乘。分式乘方:分式乘方要把分子、分母分别乘方。四、整数指数幂:(1)(2)较小数的科学记数法;五、分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。(这个解是增根,原方程无解)。第十七章反比例函数一、形如y=(k为常数,k≠0)的函数称为反比例函数;二、反比例函数的图像属于双曲线;三、性质:当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。第十八章勾股定理一、勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么二、勾股定理逆定理:如果三角形三边长a,b,c满足,那么这个三角形是直角三角形。三、经过证明被确认正确的命题叫做定理。四、我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)第十九章四边形一、平行四边形:1、定义:有两组对边分别平行的四边形叫做平行四边形。2、性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。3、判定:(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论