太阳能充电控制器_第1页
太阳能充电控制器_第2页
太阳能充电控制器_第3页
太阳能充电控制器_第4页
太阳能充电控制器_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

太阳能充电控制器能根据蓄电池电压高低,调节充电电流大小,并决定是否向负载供电,实现以下目标。1.经常保持蓄电池处在饱满状态。2.防止蓄电池过度充电。3.防止蓄电池过度放电。4.防止夜间蓄电池向太阳能板反向充电。连接:(如图所示)1.将太阳能板的“+”、“-”极正确牢固地连接到控制器相应的端子上(左起第1、第2);2.将蓄电池的“+”、“-”极下确牢固地连接到控制器相应的端子上(左起第3、第4);3.将负载的“+”、“-”极正确牢固地连接到控制器相应的端子上(左起第5、第6)。指示灯:1.电压指示灯3支,指示蓄电池电压的高低。3去全亮时表示电压充足。只亮1支或者2支时,说明蓄电池电压偏低,有可能负载不能工作,属正常现象。待蓄电池电压被充电到达12.6V(或25.2V)以上时负载会被容许工作。2.充电指示灯1支,亮起表示正在强力充电,闪动表示正在浮动充电,不亮表示充电已经停止。3.负荷指示灯1支,亮起表示有输出,负载可以工作;不亮表示没输出,负载不能工作。注意事项:1.接线前请仔细核对并确认太阳能板、蓄电池、负载的额定电压,三者的额定电压应相同,且都是12V(24V)。2.边线时特别注意太阳能板、蓄电池、负载的“+”、“-”极都不能接错。接错有可能烧坏您的控制器。太阳能板、负载的额定电流不得大于控制器的额定电流相关信息产品名称:太阳能充电控制器

产品产地:\

产品价格:\

公司名称:北京中海龙电子科技有限公司

联系人:路梅

联系电话81629630

联系手机:86629630

公司传真/p>

公司网址:

E-mail:bjzhlkj@126.com太阳能控制器KZ系列太阳能智能控制器功能如下:★输出两路220V交流电压★输出一路交流220V,一路直流12-48V★输出直流12-48V★采用单片机微电脑芯片控制★自动开关灯功能(天黑负载开通、天亮负载切断)★蓄电池过充与过放保护★涓流充电功能(蓄电池达到过充保护点时,采用定电压、小电流充电)★自动恢复放电功能(蓄电池达到过放保护点时,控制器自动切断负载回路,只有充电到11.6V后,电路方能恢复正常放电)★温度补偿功能(-4mV/℃)★防止反充功能(蓄电池向太阳能电池充电)★防止蓄电池与太阳能电池反接功能★过载与短路保护功能产品名称:太阳能控制器

产品产地:

产品价格:

公司名称:华龙能源科技(莆田)有限公司

联系人:小许

联系电话/p>

联系手机/p>

公司传真/p>

公司网址:

E-mail:china_huadragon@163.com太阳能发电系统原理及分类太阳能就是太阳辐射能。在太阳里每时每刻都进行着激裂的核裂变和核聚变反应,从而产生大量的热。太阳表面的温度达6000℃左右内部温度高达数百万度。由于太阳的温度很高它不断地向宇宙空间辐射能量,包括可见光不可见光和各种微粒,总称为太阳辐射。

地球上除核能以外的一切能源无论是煤炭、石油、天然气、水力或风力都来自太阳,全球人类目前每年能源消费的总和只相当于太阳在40分钟内照射到地球表面的能量。太阳能随处可得,不必远距离输送,而且是洁净的能源。由于这些独特的优点太阳能发电作为新兴的产业正在迅速崛起。

太阳能发龟系统可分为太阳能热发电和太阳能光发电两类。太阳能热发电就是利用太阳能将水加热,使产生的蒸汽去驱动汽轮发电机组。根据热电转换方式的不同把太阳能电站分为集中型太阳能电站和分散型太阳能电站。塔式太阳能电站是集中型的一种,即在地面上敷设大贵的集热器即反射器)阵列,在阵列中适当地点建一高塔,在塔顶设置吸热器即锅炉),从集热器来的阳光热聚集到吸热器上使吸热器内的工作介质温度提高变成燕汽通过管道把蒸汽送到她面上的汽轮发电机组发电。

分散型太阳能电站的集热装置的特点是以一个镜体配合一个吸热器组成一个独立的单元。根据发电容量的设计要求,串、并联若干单元组成电站。

太阳能光发电是利用太阳电池组将太阳能直接转换为电能。太阳电池由单晶硅或非晶硅薄膜制成,转换效率最多为10%-17%。将太阳电池排成方阵其总面积决定所需的功率。太阳电池发出直流电而且要随阳光的强弱变化所以还得配备逆变器将直流电变为交流电、蓄电池和相应的调控设备。太阳能光发电已广泛用于人造地球卫星和宇航设备上,也可作为孤立地区的独立电源然而将来其造价进一步降低之后,太阳能发电将进入千家万户。

近年来人们对建造宇宙空间太阳能电站的问题进行了大量的研究。宇宙空间太阳能电站的主要技术内容是:在绕地球的同步轨道上建造卫星电站太阳辐射能通过光电池转变成电能,用微波发生装置将电能转变为微波,然后再以集束形式把微波发射到地面接收站地面接收装置再把微波转变成电能输送到电网中。太阳能发电系统介绍

太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或110V,还需要配置逆变器。各部分的作用为:

(一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。

(二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项;

(三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。

(四)逆变器:太阳能的直接输出一般都是12VDC、24VDC、48VDC。为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。

太阳能发电系统的设计需要考虑的因素:

1、太阳能发电系统在哪里使用?该地日光辐射情况如何?

2、系统的负载功率多大?

3、系统的输出电压是多少,直流还是交流?

4、系统每天需要工作多少小时?

5、如遇到没有日光照射的阴雨天气,系统需连续供电多少天?

6、负载的情况,纯电阻性、电容性还是电感性,启动电流多大?

7、系统需求的数量。蓄电池的四个发展阶段

1.1.1普通铅酸蓄电池

在50年代,生产的铅蓄电池叫普通电池,当时的产品用户启用时都要有“初充电”工艺环节。电解液注入电池后,电池发热,待电解温度降下来后,进行第一次充电。充电后再放出容量,这个循环叫充放电循环。初充电的工艺过程在早期有6次充电5次放电之多,后随着技术的发展,充放电循环次数逐步减少。铁道部原机务局曾规定三充两放。

为什么要进行三充两放?

三充两放的目的是检测蓄电池的实际容量。

铅蓄电池电化反应方程式是:

PbO+2H2SO4+Pb=PbSO4+2H2O+PbSO4

......

(1.1)

电池放电的条件是右边的三要素,缺一不可。放出的电容量是按桶板原理组成的,但新电池的放电却得不到应有的容量,这是因为负板Pb在硫酸电液注入前就被氧化了。

2Pb+O2=2PbO

.....

(1.2)

在电池生产的化成工序中,生极板变成了熟极板,熟负极板上的铅具有高度活化性,从化成槽中取出后,可同空气中的氧迅速进行1.2式的反应,同时放出大量的热。于是,极板就由高势能状态降低为低势能状态,这个反应使负极板失去了活性。在潮湿的条件下,反应进行的十分迅速。经水洗干燥后,这种反应并没有停止。组装成电池,直到启用时仍在进行。注入硫酸电解液后。就再次发生电热反应。

PbO+H2SO4=PbSO4+H20+Q

......

(1.3)

这个反应使电池负极失去了电活性。初充电的充放电循环目的就是将负极板活化。

1.1.2发展到干荷电电池

为了给用户提供方便,取消初充电工艺环节,就需要保护负极板,使其在生产、储运过程中不被氧化。这就需要使负极板活性物质具有抗氧化能力,现在采取的技术措施是:

①.在铅膏配方中添加抗氧化剂,如松香、乙二酸。

②.将铅微粒包裹一层抗氧化剂,如油、硼酸。

只要将负极保护好,不使其氧化,这样就得到了在未注液前的干状态下就能保持其带电性的荷电极板,简称干荷电极板。用干荷电极板组装电池一旦注液,30分钟内电池就能达到80%的容量,电池就可投入使用。

1.1.3.发展到免维护电池

在电池的使用中,常需要补充水,因为一旦缺水电池就损坏了。补水是件十分麻烦的事,因为许多用户在需要补水时找不到合格的电瓶水。

电池失水的原因是:

①物理失水:电解液会受热蒸发。

②化学失水:由于杂质存在,杂质与铅构成微电池,使水不断分解成气体。

③电化失水:过充电时,当充电电压超过2.3V时,水分解就发生。要减少其耗电量,必须将水的分解电压值提高。

在以上这三种失水形式中,后两种是主要的,最后一种原因造成失水的比例最大。

现已找到一种铅钙合金,使用铅钙合金制造电池时,水的分解电压就由2.3V提高到2.45V。如果将充电电压控制在2.45V以下,电池在使用时的耗水量就能降到很少,汽车电池充电电压是14.4V±0.1V,平均到每个单格为2.4±0.016V。现已做到汽车电池连续装车行驶6个月-8个月加一次水,生产厂家为了推销方便,把这个耗水量很低的电池起名为“免维护电池”,即“MF”电池,这是这种电池的商业名字。事实上,这种电池维护工作包括:检测技术状态、补充电、补水。只把加水周期延长了,对维护的要求高了,并不是真正意义的“免维护”。

从技术角度分析,真正免维护电池是没有的。

1.1.4.发展到密闭电池

免维护电池的水耗电量能否再减少,使电池在整个使用期内不补水,在特殊情况下电池允许自由取向,立式、卧式都能工作。

密闭电池的关键是如何将电池中产生的气体在电池中重新合成为水。

密闭电池早在50年代就有,那时是采用金属钯作催化剂,使电池中的氢气和氧气在无焰状态下化合成水

H2+O2→H2O+Q

......1-4

由于化合是从高能态的气体转化成低能态的液体,所以会释放出大量的热,这些热量能使钯珠的温度达300℃左右。由于钯昂贵,电池使用条件十分严格,所以这种电池只有在特殊情况下使用,如潜艇、水电站等。

到70年代,又发展一种阴极吸收式密闭电池,这种电池消除气体的办法是,首先使电池尽可能不产生氢气H2,氧气O2是通过负极吸收转化成液体的成份。

转化过程如式1-5所示:

负极

充电

O2+Pb→PbO+H2SO4→PbSO4+H2O→Pb+H2SO4....1-5

消气过程是:在正极PbO2上充电时产生O2,同负极上Pb反应生成氧化铅PbO,PbO同电解液中的硫酸H2SO4反应生成硫酸铅PbSO4和水,负极上的PbSO4经充电又恢复成Pb,硫酸根SO2-4又一次进入电液,使电液密度值升高。

在上述消气过程中,其关键是隔板必须是透气的。现采用的办法是利用玻璃毛毡的吸液性,在用玻璃毛毡制成的隔板中保持气相、液相、固相共存。这样,在正极上产生O2能通过毛毡上的气体通道,逐步扩散到负极上去。消除O2的过程是个动平衡的过程,产生O2的量与消除O2的量达到平衡时,电池使用才是安全的。

一旦发生过充电,产生O2的量大于消除O2的量,会使电池内气体压力越来越大,为了避免发生爆炸事故,电池顶盖上都设有安全阀,以防不测。所以这种电池都叫“阀控式阴极吸收密闭免维护电池”。

不难理解,密闭电池应使用电压精度较高的恒压充电机充电,绝对不允许用恒流充电进行补充电作业。过充电对密闭电池来讲可谓是第一杀手。蓄电池剩余容量在线测试蓄电池是一种使用非常广泛的产品,例如太阳能光伏系统、移动通讯的基站、汽车等等都少不了它,它又是成本比较高的产品,因此如何延长其使用寿命,是一项很有意义的工作。而快速在线检测蓄电池的剩余容量SOC(又称蓄电池的荷电状态),便于蓄电池的用户或检修工程师迅速了解蓄电池的状态,以便采取措施,防止蓄电池的过充电和过放电,从而可达到延长蓄电池的使用寿命。SOCT-I蓄电池容量测试仪就是为达此目的而研制的。

蓄电池剩余容量放电和充电过程的数学模型

铅酸蓄电池剩余容量(SOC)与蓄电池端电压、充放电电流、初始电液比重、环境温度等物理化学参数之间的关系可以用数学模型表示触及于这个数学模型,就可以通过测量蓄电池充放电过程中的各个物理参数得知蓄电池的当前容量。数学模型表达式如下:

U放=Ur-axLOG(1+DOD/SOC)-bxLOG(1+I/(Ahx(1+K(T-25)))xDODx100)-I/(Ahx(1+K(T-25)))xcx(0.01x(25-T))xDOD

a:由于反应物和生成物比例改变引起的电压变化的常数,0.1~0.2;b:电化学极化项常数,0.1~0.15;c:内阻极化项常数,0.08~0.15。

U充=Ur+dxLOG(1+SOC/DOD)+exLOG(I/(Ahx(1+K(T-25)))xSOCx100)+I/(Ahx(1+K(T-25)))xfx(0.01x(25-T))xDODd:由于反应物和生成物比例改变引起的电压变化的常数,0.1~0.2;e:电化学极化项常数,0.2~0.25;f:内阻极化项常数,0.15~0.25。JKSOC-I蓄电池剩余容量测试仪就是根据上述蓄电池剩余容量放电和充电过程的数学模型研制的。

蓄电池剩余容量在线测试仪的研制方案

从数学模型可以看出几个主要物理量对SOC的影响较大:

1.不同充放电率I/Ah;

2.不同初始电压Ur;

3.不同温度T。温度主要影响蓄电池的额定容量。温度对额定容量的影响:Ca=Cr×[1+K(T-25)]Ca:任何温度下的蓄电池实际容量;Cr:蓄电池在25℃下的额定容量;T:实际温度℃;K:温度系数,温度每变化1℃,SOC变化约为0.5%~0.8%。温度对额定容量的影响表现在对充放电率I/Ah的影响,温度降低或增加20℃,充放电率增大或减小10%~16%。一般蓄电池的工作温度最多在25±10℃变化,因此,充放电率也只在±(5%~8%)变化。对SOC的影响就更小。可以看出温度对SOC的影响比起I/Ah、Ur要小得多。从蓄电池端电压与SOC之间关系的数学模型分析,SOC除了与端电压有关以外,还与蓄电池充放电率、初始电动势、温度等物理量有关,因此在设计蓄电池容量在线测试仪时,必须考虑到这些物理量的输入方式,同时必须便于工程师携带。还有一个因素即成本,应在保证实现所有功能前提下尽可能降低成本。

综合考虑上述因素,拟采用下述方案:1.用嵌入式微处理器芯片作为仪器的核心器件,由它按蓄电池端电压与SOC之间关系数学模型完成主要计算;2.有两个模拟量需实测:蓄电池电压、环境温度。为降低成本,拟采用串行数据输出的A/D转换芯片;

3.蓄电池充放电率、初始电动势拟采用小键盘输入;4.采用128×64LCD液晶显示器显示输入量及计算出的SOC;5.为便于携带供电方式拟采用两种方式:电池或15V稳压电源。

按上述方案设计的蓄电池容量在线测试仪微处理器采用AT89S52单片机,此单片机低成本,低功耗,高性能,易扩充,并有8K程序存储器,SOC的计算及键盘输入、LCD显示等控制都由此芯片完成;温度检测采用了DALLAS的DS18B20。此芯片具有温度传感器和A/D转换功能,转换后的串行数据通过one_wire(一线)与CPU通讯。测量温度范围从-55℃到+125℃,芯片转换精度为0.0625℃;端电压采样采用物美价廉的电压转频率芯片LM331,调到转换精度为1/1000V,即调成1V电压转换为1000Hz频率;电源模块采用一个插入开关,当没有外部电源时由电池供电,当有外部电源接入时,断开电池连接,由15V直流适配器给电路供电。测试仪所用数学模型经广东番禺恒达蓄电池总厂产品测试,误差不超过10%。北京市计科能源技术开发公司

电话:010-8260997521世纪的绿色能源太阳电池1.引言

在大多数人的心目中,电力是一种清洁的能源,当使用电灯、电视、电冰箱、空调等电器时,也许我们并没有意识到电力对环境造成的破坏,实际燃煤发电对环境的破坏是很大的。我国现在是世界上第二号温室气体的排放大国,而常规电力生产使用煤、石油、天然气发电,已经成为我国二氧化碳等温室气体的主要排放源之一,而且燃煤还大量排放二氧化硫等有害气体。当我们使用常规电力时,我们其实是间接的污染者,因为我们对电力的需求才产生了供给,从而间接对环境造成了污染。同时我们又是污染的受害者。

21世纪,人类将面临实现经济和社会可持续发展的重大挑战,在有限资源和环保严格要求的双重制约下发展经济己成为全球热点问题。而能源问题将更为突出。能源短缺使世界上大部分国家能源供应不足,不能满足其经济发展的需要。从长远来看,全球已探明的石油储量只能用到

2020年,天然气也只能延续到2040年左右,即使储量丰富的煤炭资源也只能维持二三百年。

由于燃烧煤、石油等化石燃料,每年有数十万吨硫等有害物质抛向天空,使大气环境遭到严重污染,直接影响居民的身体健康和生活质量;局部地区形成酸雨,严重污染水土。化石能

源的利用产生大量的温室气体而导致温室效应;引起全球气候变化。这一问题已提到全球的议事日程,有关国际组织已召开多次会议,限制各国CO2等温室气体的排放量。因此,人类在解决上述能源问题,实现可持续发展,只能依靠科技进步,大规模地开发利用可再生洁净能源。

太阳能具有储量的“无限性”太阳每秒钟放射的能量大约是1.6×1023KW,一年内到达地球表面的太阳能总量折合标准煤共约1.892×1013千亿吨,是目前世界主要能源探明储量的一万倍。相对于常规能源的有限性,太阳能具有储量的“无限性”,取之不尽,用之不竭。对于其他能源来说,太阳能对于地球上绝大多数地区具有存在的普遍性,可就地取用。这就为常规能源缺乏的国家和地区解决能源问题提供了美好前景。利用的清洁性太阳能像风能、潮汐能等洁净能源一样,其开发利用时几乎不产生任何污染。利用的经济性可以从两个方面看太阳能利用的经济性。一是太阳能取之不尽,用之不竭,而且在接收太阳能时不征收任何“税”,可以随地取用;二是在目前的技术发展水平下,太阳能利用不仅可能而且可行。鉴于此,太阳能必将在世界能源结构转换中担纲重任,成为理想的替代能源。

2.太阳能电池

50年代第一块实用的硅太阳电池的问世,揭开了光电技术的序幕,也揭开了人类利用太阳能的新篇章。自60年代太阳电池进入空间、70年代进入地面应用以来,太阳能光电技术发展迅猛。1990年以来,全球太阳能光伏发电装置的市场销售量以年平均16%的幅度递增,目前总发电能力已达800MW,相当于20

万个美国家庭的年耗电量。1997年全球太阳电池的销售量增长了40%,已成为全球发展最快的能源。

2.1影响光电技术应用的问题

当前影响光电池大规模应用的主要障碍是它的制造成本太高。在众多发电技术中,太阳能光电仍是花费最高的一种形式,因此,发展阳光发电技术的主要目标是通过改进现有的制造工艺,设计新的电池结构,开发新颖电池材料等方式降低制造成本,提高光电转换效率。近年来,光伏工业呈现稳定发展的趋势,发展的特点是:产量增加,转换效率提高,成本降低,应用领域不断扩大。1998年,世界太阳电池年产量已超过150MW,是1994年产量的两倍还多。单晶硅太阳电池的平均效率为15%,实验室效率已达24.4%;多晶硅太阳电池效率也达14%,最大效率为19.8%;非晶硅太阳电池的稳定效率,单结6~9%,实验室最高效率为12%,多结电池为8~10%,实验室最高效率为11.83%。

最近,瑞士联邦工学院M·格雷策尔研制出一种二氧化钛太阳能电池,其光电转换率高达33%,并成功地采用了一种无定形有机材料代替电解液,从而使它的成本比一块差不多大的玻璃贵不了多少,使用起来也更加简便。可以预料,随着技术的进步和市场的拓展,光电池成本将会大幅下降。可以得出,在2010年以后,由于太阳能电池成本的下降,可望使光伏技术进入大规模发展时期。

2.2光伏新技术的开发

近年来,围绕光电池材料、转换效率和稳定性等问题,光伏技术发展迅速。晶体硅太阳能电池的研究重点是高效率单晶硅电池和低成本多晶硅电池。限制单晶硅太阳电池转换效率的主要技术障碍有:电池表面栅线遮光影响;表面光反射损失;光传导损失;内部复合损失;表面复合损失。

针对这些问题,近年来开发了许多新技术,主要有:单双层减反射膜;激光刻槽埋藏栅线技术;绒面技术;背点接触电极克服表面栅线遮光问题;高效背反射器技术;光吸收技术。随着这些新技术的应用,发明了不少新的电池种类,极大地提高了太阳能电池的转换效率,如采用激光刻槽埋藏栅线等新技术将高纯化晶体硅太阳能电池的转换效率提高到24.4%。

光伏技术发展的另一特点是薄膜太阳能电池研究取得重大进展,各种新型太阳能电池的不断涌现。晶体硅太阳能电池转换效率虽高,但其成本难以大幅度下降,而薄膜太阳能电池在降低制造成本上有着非常广阔的诱人前景。早在几年前,利用多层薄膜结构的低质硅材料已使太阳能电池成本骤降80%,有望1O年内使该项技术商业化。

高效新型太阳能电池技术的发展是降低光电池成本的另一条切实可行的途径,近年来,一些新型高效电池不断问世:

硒化铜钢(CUINSE2,CIS)薄膜太阳能电池:1974年CIS电池在美国问世,1993年美国国家可再生能源实验室使它的本征转换效率达

16.7%,由于CIS太阳能电池具有成本低(膜厚只有单晶硅的1/100)、可通过增大禁带宽度提高转换效率(理论值为单晶30%,多晶24%)、没有光致衰降、抗放射性能好等优点,各国都在争相研究开发,并积极探索大面积应用的批量生产技术。

硅-硅串联结构太阳能电池:通过非晶硅与窄禁带材料的层叠,是有效利用长波太阳光,提高非晶硅太阳能电池转换效率的良好途径。它具有成

本低、耗能少、工序少、价廉高效等优点。

用化学束外延(CBE)技术生产的多结III-V族化合物太阳能电池:III-V族化合物(如GAAS,INP)具有较高的光电转换效率,这些材料的多层匹配可将太阳能电池转换效率提高到35%以上。而这种多层结构很容易用CBE法制作,并能降低成本获得超高效率。

大面积光伏纳米电池:1991年瑞士M.GRATZEL博士领导的研究小组,用纳米TIO2粉水溶液作涂料,和含有过渡族金属有机物的多种染料及玻璃等材料制作出微晶颜料敏感太阳能电池,简称纳米电池。计算表明,可制造出转换效率至少为12%的低成本电池。这种电池为大面积应用于建筑物外表面提供了广阔的前景。

3.太阳电池的发展现状

太阳电池的进展情况可以从其性能指标、产量、价格等方面来评价。太阳电池的性能指标有开路电压、短路电流、填充因子、光电转换效率等多顶,其中最主要的指标是光电转换效率,即将光能转变为电能的效率。

太阳电池主要可以分为硅太阳电池和化合物半导体太阳电池两大类。下面分别加以叙述。

3.1硅太阳电池

硅是地球上第二位最丰富的元素,而且无毒性,用它制作的太阳电池效率也很高,因此它是最适于制作太阳电池的半导体材料。1997年,世界上太阳电池年产量约为120MW,其中99%以上为硅太阳电池。在硅太阳电池中又可分为单晶硅、多晶硅和非晶硅太阳电池三类。

1.单晶硅和多晶硅太阳电池

单晶硅和多晶硅太阳电池是对P型(或n型)硅基片经过磷(或硼)扩散做成P/N结而制得的。单晶硅太阳电池效率高、寿命长、性能优良,但成本高,而且限于单晶的尺寸,单片电池面积难以做得很大,目前比较大的为直径为10~20cm的圆片.多晶硅电池是用浇铸的多晶硅锭切片制作而成,成本比单晶硅电池低,单片电池也可以做得比较大(例如30cm×30cm的方片),但由于晶界复合等因素的存在,效率比单晶硅电池低。

现在,单晶硅和多晶硅电池的研究工作主要集中在以下几个方面:

(1)用埋层电极、表面钝化、密栅工艺优化背电场及接触电极等来减少光生载流子的复合损失,提高载流子的收集效率,从而提高太阳电池的效率。澳大利亚亲南威尔士大学格林实验室采用了这些方法,已经创造了目前硅太阳电池世界公认的AM1.5条件下24%的最高效率。

(2)用优华抗射膜、凹凸表面、高反向背电极等方式减少光的反射及透射损失,以提高太阳电池效率。

(3)以定向凝固法生长的铸造多晶硅锭代替单晶硅,估化正背电极的银浆、铝浆的丝网印制工艺,改进硅片的切、磨、抛光等工艺,千方百计降低成本,提高太阳电池效率。目前最大硅锭重量已达270余公斤。

(4)薄膜多晶硅电池还在大力研究和开发。计算表明,若能在金属、陶瓷、玻璃等基板上低成本地制备厚度为30~50μm的大面积的优质多晶硅薄膜,则太阳电池制作工艺可进一步简化,成本可大幅度降低。因此多晶硅薄膜太阳电池正成为研究热点。

现在单晶及多晶硅太阳电池的世界年产量已达到120MW左右。硅太阳电池的最高效率可达18%~24%。航空航天用的高质量太阳电池在AMO条件下的效率约为13.5%~18%,而地面用的大量生产的太阳电池效率在AM1条件下大多在11%~18%左右。

2.非晶硅太阳电池

由于非晶硅对太阳光的吸收系数大,因而非昌硅太阳电池可以做得很薄,通常硅膜厚度仅为1-2μm,是单晶硅或多晶硅电池厚度(0.5mm左右)的1/500,所以制作非晶硅电池资源消耗少。

非晶硅太阳电池一般是用高频辉光放电等方法使硅烷(SiH4)气体分解沉积而成的。由于分解沉积温度低(200℃左右),因此制作时能量消耗少,成本比较低,且这种方法适于大规模生产,单片电池面积可以做得很大(例如0.5mX1.0m),整齐美观。非晶硅电池的另一特点是对蓝光响应好,在一般地荧光灯下也能工作,因此被广泛用作电子计算器和手掌电脑的电源,估计全世界使用量达到每月1千万片左右。以上这些优点,使非晶硅太阳电池在近10余年来得到大踏步的发展,1997年全世界的产量估计已达到30MW以上。

非晶硅由于其内部结构的不稳定性和大量氢原子的存,具有光疲劳效应(Staebler

Wronski效应),故非晶硅太阳电池经过长期稳定性存在问题。近10年来经努力研究,虽有所改善,但尚未彻底解决问题,故作为电力电源,尚未大量推广。

非晶硅中由于原子排列缺少结晶硅中的规则性,缺陷多。因此单纯的非晶硅p/n结中,隧道电流往往占主导地位,使其呈现电阴特性,而无整流特性,也就不能制作太阳电池。为得到好的二极管整流特性,一定要在p层与n层之间加入较厚的本征层i,以扼制其隧道电流,所以非晶硅太阳电池一般具有pin结构。为了提高

效率和改善稳定性,有时还制作成pin/pin/pin等多层结构式的叠层电池,或是插入一些过渡层。

非晶硅太阳电池的研究,现在主要着重于改善非晶硅膜本身性质,以减少缺陷密度,精确设计电池结构和控制各层厚度,改善各层之间的界面状态,以求得高效率和高稳定性。

目前非晶硅单结电池的最高效率已可达到14.6%左右,大量生产的可达到8%~10%左右。叠层电池的最高效率可达到21.0%。

3.2化合物半导体太阳电池

在化合物半导体太阳电池中,目前研究应用较多的有CaAs、InP、CuInSe2和CdTe太阳电池。由于化合物半导体或多或少有毒性,容易造成环境污染,因此产量少,常常使用在一些特殊场合。

1.砷化钾太阳电池

砷化钾(GaAs)太阳电池可以得到较高的效率,实验室最高效率已达到24%以上,一般航天用的太阳电池效率也在18%~19.5%之间。砷化钾太阳电池目前大多用液相外延方法或金属有机化学气相沉积(MOCVD)技术制备,因此成本高、产量受到限制,降低成本和提高生产效率已成为研究重点。砷化钾太阳电池目前主要用在航天器上。

现在,硅单晶片制备技术成熟,成本低,因此以硅片为衬底,以MOCVD技术用异质外延方法制造GaAs太阳电池降低GaAs太阳电池成本的很有希望的办法。目前,这种电池的效率也已达到20%以上。但GaAs和Si晶体的晶格常数相关较大,在进行导质外延生长时,外延层晶格失配严重,难以获得优质外延层。

为此常Si衬底上首先生长一层晶格常数与GaAs

相差较少的Ge

晶体作为过渡层,然后再生长GaAs外延层,这种Si/Ge/GaAs结构的异质外延电池正在不断发展中。控制各层厚度,适当变化结构,可使太阳光中各种波长的光子能量都得到有效利用,目前以GaAs为基的多层结构太阳电池的效率已接近40%。

2.磷化铟太阳电池:磷化铟太阳电池具有特别好的抗辐照性能,因此在航天应用方面受到重视,目前这种电池的效率也已达到17%~19%。

3.CuInSe2

多晶薄膜太阳电池:这种电池的效率也达到17.6%左右,而且性能稳定,作为多晶薄膜电池是很有发展前途的。但因成分较复杂,制作工艺重复性差,影响了它的发展。

此外,Cds/CdTe太阳电池的效率也已达到15.8%,但这种电池毒性大,易造成对环境的污染。

4.太阳电池的应用

通信卫星通常采用太阳电池方阵给各系统供电,并为蓄电池充电,在星食期间,蓄电池给卫星供电。过去,太阳电池方阵广泛采用硅光电池。目前较先进的硅光电池转换效率可达15%,但这种电池已不能满足大型平台的要求,现在正在发展和使用砷化钾太阳电池。目前单结砷化钾太阳电池转换效率一般达18%,双结砷化钾太阳电池可达21-23%。这种电池不仅效率高,而且耐高温,耐空间辐射。现在正在研制多结砷化钾太阳电池,其转换效率可望达到30%以上。为了再进一步提高太阳电池方阵的效率,现在正研究使用太阳能聚光板,以提高太阳能量,使太阳常数提高到1以上。过去通信卫星蓄电池普遍采用镍镉电池,随着卫星功率不断增加,现正发展使用镍氢电池。镍氢电池比镍镉电池放电深度深,比容量大。

为使“深空1号”星际探测器成为现实,美国空军研究实验室提出6项关键技术,它们是:

1.轻型太阳电池方阵。未来的太阳帆板采用复合结构,连接各部分的电缆线将被淘汰,太阳帆板采用塑性铰接。使用薄膜太阳电池,每公斤重量供能116瓦,而现有系统为40-50瓦。多结薄膜光电池使电池太阳方阵在轨道上易于展开。轻型“智能”结构可自动消除振动和热效应。

2.柔性集成供电和信号系统。通过真空镀膜技术,使薄膜蓄电池组和柔性电池部件与阻挡层光电池连接,形成多层卫星总线。柔性电池组安装在其它子系统周围。

3.多功能结构。

4.超高密度电路。

5.微机电系统。

6.轻型大光学系统。

美国1998年10月24日发射了“深空1号”星际探测器。采用集光器型太阳电池进行试验。这种太阳电池方阵实际只有13%的面积被覆以太阳电池片,另外还带有720面菲列尔透镜,利用线性排列的菲列尔透镜把所有阳光都聚集到这些电池上。由于电池少,而透镜又比玻璃罩的电池轻,所以太阳电池方阵的重量减轻了,价格也变便宜了。“深空1号”2.6千瓦的太阳电池方阵有4块帆板,大小为1.1mx1.6m,总重58公斤。为增强辐射防护能力,电池区上的玻璃罩可做得厚一些。太阳电池本身有两种,它们叠在一起,可在0.4μm~0.85μm的宽频谱范围内进行能量转换,预计效率在22%以上。这种太阳电池方阵的缺点是指向稍有一点点误差,能力就会大大降低。

5.太阳能开发利用的发展趋势

人类利用太阳能已有几千年的历史,

但发展一直很缓慢,现代意义上的开发利用只是近半个世纪的事情。1954年,美国贝尔实验室研制出世界上第一块太阳电池,从此揭开了太阳能开发利用的新篇章,之后,太阳能开发利用技术发展很快,特别是70年代爆发的世界性的石油危机有力地促进了太阳能的开发利用。随着可持续发展战略在世界范围内的实施,太阳能的开发利用又被推到新高度。

21世纪初至中叶将是太阳能开发利用技术的重要发展时期。世界范围内的能源问题、环境问题的最终解决将依靠可再生洁净能源特别是太阳能的开发利用。

光伏技术的发展,近期将以高效晶体硅电池为主,然后逐步过渡到薄膜太阳能电池和各种新型太阳电池的发展。如前所述,晶体硅太阳电池具有转换效率高、性能稳定、商业化程度高等优点,但也存在硅材料紧缺、制造成本高等问题。而薄膜太阳能电池以及各种新硅太阳能电池都具有生产材料廉价、生产成本低等特点,随着研发投入的加大,必将促使其中一、二种获得突破,正如专家断言,只要有一、二种新型电池取得突破,就会使光电池局面得到极大的改善。

随着光电化学及光伏技术和各种半导体电极试验的发展,使得太阳能制氢成为氢能产业的最佳选择。20世纪90年代在太阳能制氢方面获得了较大进展,

1990年德国建成一座500KW太阳能制氢示范厂,沙特阿拉伯已建成发电能力为350KW的太阳能制氢厂。印度于1995年推出了一项制氢计划,投资

4800万美元,在每年有300个晴天的塔尔沙漠中建造一座500KW太阳能电站制氢,用光伏—电解系统制得的氢,以金属氢化物的形式贮存起来,保证运输的安全。氢能具有重量轻、热值高、爆发力强、品质纯净、贮存便捷等许多优点。随着太阳能制氢技术的发展。用氢能取代碳氢化合物能源将是21世纪的一个重要发展趋势。

随着世界范围内的环境意识和节能意识的普遍提高,太阳能热利用领域将得到最大限度的扩展,其普及程度将会有较大的提高。随着太阳能热水器性能的改善,太阳能热水器将逐步取代电热水器和燃气热水器。与此同时,光伏技术将逐步由农村、偏远地区以及其它特殊应用场合向城市推进,伴随着更多国家屋顶计划的实施,光伏发电将走进城市的千家万户。

随着人类航天技术以及微波输电技术的进一步发展,空间太阳能电站的设想可望得到实现。由于空间太阳能电站不受天气、气候条件的制约,其发展显示出美好的前景,是人类大规模利用太阳能的另一条有效途径。

无机太阳能光电转换的材料

用于光电化学太阳能电池中半导体电极研究的材料包括有:Si、Ⅱ~Ⅵ族化合物CdX(X=S、Se、Te)、Ⅲ~Ⅴ族化合物(GaAs、InP)、二硫族层状化合物(MoS2、FeS2)、三元化合物(CuInSe2、CuInS2、AgInSe2)及氧化物半导体(TiO2、ZnO、Fe2O3)等,其中窄禁带半导体(Eg≤2.0eV)可获得较高的光电转换效率,但存在光腐蚀现象;宽禁带半导体(Eg≥3.0eV)有良好的稳定性,但对太阳能的吸收率低。因此大量的研究工作都是围绕提高光电效率和稳定性进行的。

Ⅱ~Ⅵ族化合物半导体CdX(X=S、Se、Te)是光电化学研究较为普遍的光电极材料,其主要优点是可用多种方法如粉末压片法、涂敷法、真空沉积、化学气相沉积、电沉积、化学溶液沉积以及喷涂热解法等制备,得到转换效率较高的多晶或薄膜光电极,这些方法价格低廉、简单易行,多数还可适用于大面积制备。在CdX(X=S、Se、Te)化合物中CdS的能隙较大(Eg=2.4eV),只能吸收小于517nm波长的太阳光,曾用压片烧结、涂敷、喷涂热分解制备各种CdS电极并用RuS2进行光谱敏化,将吸收截止波长由517nm延长至890nm,但转换效率都很低,因此研究的重点是CdSe和CdTe电极。用涂敷法在各种金属基底(钛、铬、钼、铂)、非金属基底(二氧化锡、石墨、破碳)上都可成功制备性能稳定、重现性好的CdSe薄膜电极。在金属基底CdSe薄膜结合力强,界面电阻小,经过电极表面的化学刻蚀和光化学刻蚀获得了7%的能量转换效率。进一步控制热处理气氛中的含氧量使转换效率提高至8.3%。制备中用Te替代部分Se形成CdSe和CdSexTe1-x薄膜电极,其光谱响应范围与X值大小有关,当调X=0.63时能量转换效率达到12.3%。CdTe具有吸收太阳光能的最佳能隙(Eg=1.4eV),其单晶电极在多硫溶液中达到15.6%的光电转换效率,但用电沉积法制备多晶薄膜电极却只获得3.6%的转换效率。比较CdX(X=S、Se、Te)光电极性能不难看出,CdSe和CdSexTe1-x薄膜的光电性能和稳定性能优于CdS和CdTe电极,是光电化学研究中有发展前途的光电极材料。

在CdS和CdTe薄膜的研究中证明了表面修饰也是改善光电性能的有效措施,研究Au、Pt、Ru和Pd等贵金属修饰CdS和CdTe电极,发现贵金属在电极表面的构型不同会产生不同效果,大量的Pt覆盖电极表面降低了电极界面光电化学反应的极化,增大了反应的交换电流,是电极界面光电催化的最佳构型。Pd的修饰形成了金属致密层,结果使光电性能下降,产生与Pt修饰相反的效果。用LB膜技术实现分子取向、排列结构和浓度可控的条件下研究具有不同氧化还原电位和传递电荷性质的二茂铁衍生物修饰CdSe。薄膜电极将电极表面的微观分子设计与宏观电极过程联系起来,为修饰分子的优化提供大量信息,使半导体电极表面修饰技术有很大的提高和发展。对Ⅲ~Ⅴ族化合物半导体主要研究GaAs和InP单晶电极,它们具有吸收太阳光能的最佳带隙,可以构成高效的光电化学电池。n-GaAs电极在多硒溶液中有较好的稳定性,经H2SO4-H2O2混合溶液的反复刻蚀,再吸附Ru3+离子后有效降低表面复合,使光电转换效率大大提高,接近于20%。n-InP电极的晶面取向和掺杂浓度对光电性能有很大影响,掺杂浓度低(1016cm-3)的光电流、光电压优于掺杂浓度高(1018cm-3)的电极;在Fe2+/Fe3+酸性溶液中,性能稳定,转换效率达到18%,p-InP电极在V2+/V3+溶液中表面经Ag修饰和电镀Cu改善背面接触后效率达到18.8%。

广东工业大学

电话阳能照明系统组合中的几个问题

(1)光敏传感器,太阳能灯需要光控开关,有的设计者往往会使用光敏电阻来自动开关灯,实际上太阳能电池本身就是一个极好的光敏传感器,用它做光敏开关,特性比光敏电阻要好。对于太阳能庭院灯的应用问题不大,但是对于仅仅使用一只1.2VNi-Cd电池的太阳能草坪灯来说,太阳能电池组件由四片太阳能电池串联组成,电压低,弱光下电压更低,以至天没有黑电压已经低于0.7V,造成光控开关失灵。在这种情况下,只要加一只晶体管直接耦合放大,即可解决问题。

(2)按蓄电池电压高低控制负载大小,太阳能灯往往对连续阴雨天可维持时间要求很高,这就增加了系统的成本。我们在连续阴雨天蓄电池电压降低时减少LED或者节能灯接入的个数,或者减少太阳能灯每天的发光时间,这就减少了系统的成本。

(3)闪烁变光,渐亮渐暗是节能的好办法,它一方面可以增加太阳能草坪灯照射效果,另一方面可以通过改变闪烁占空比控制蓄电池平均输出电流,延长系统工作时间,或者在同等条件下,可降低成本。

(4)三色基色高效节能灯的开关速度。这个问题非常重要,它甚至决定了太阳能草坪灯的使用寿命,三色基色高效节能灯启动时有高达10~20倍的启动电流,系统在承受这样大的电流情况下会造成电压的大幅度下降,太阳能草坪灯就无法启动或者反复启动,导致最后的损坏。

(5)目前太阳能电池还不能够使用在主干道照明上。公路主干道的照明有法定的照度要求,就目前太阳能电池的转换效率和价格而言,还不能够满足这个要求。但在不久的将来随着各方面技术水平的提高,太阳能电池一定会应用于公路主干道的照明上。

(6)关于储能电容,太阳能电池的使用寿命在25年以上,普通蓄电池的使用寿命在2~3年,所以蓄电池是太阳能电力系统中最薄弱的环节。储能电容可以在一定程度上解决这个问题。储能电容的使用寿命可以达到10年以上,而且控制电路简单,但是昂贵的价格限制了它的应用,目前仅仅应用在部分交通信号灯和装饰灯上。随着技术水平的提高,产品价格的下降,它将是一种最有希望成为太阳能电池配套的理想储能元件。

可全天候工作的新型太阳能电池

太阳能电池通常在中午发电效率最高,因为此时太阳正处于最高点,可以以90度的角度直射电池。但是美国佐治亚技术研究所的研究人员日前研制出的一种新型太阳能电池却恰恰相反——电池在全天大部分时候都能以较高的效率运行,而且每天以早晨和下午的工作效率最高。这种利用纳米技术开发出来的新型太阳能电池,与以前的太阳能电池相比,尺寸、重量、机械结构的复杂度都较小。

目前这种太阳能电池的实验室原型只有2英寸大小,每平方厘米电池包含了4万个纳米管“塔”,每座塔高100微米,底座为边长40微米的正方形,每座之间间隔10微米。每座塔包含数百万个垂直排列的碳纳米管。

这种微型纳米管塔类似城市街道网格中的高层建筑,其独特的三维构造使它可以捕捉各个角度的光线,提高发电效率。传统的平板太阳能电池只能反射部分光线,吸收能量较少。而佐治亚技术研究所网站的动画显示,光线照射在纳米塔上之后会在相邻的塔上作多次反射,增加光线的吸收率。即使在太阳光没有90度照射时,它也可以保持高效率。佐治亚技术研究所光电系统实验室高级工程师JudReady说:“当太阳直射时,交互的区域只限于塔顶和下面的‘街道’。但是有角度时,光线有机会在塔的侧面反射。”

同时,这种三维电池提高了“量子效率”——电池把吸收的光子转化为电子的效率。在传统平板太阳能电池中,光电涂层必须足够厚才能捕获到光子,随后电子从涂层材料中释放产生电流。然而,电子移动后会在身后的原子矩阵中留下一个“空洞”。电子从材料中出来的时间越长,越有可能和空洞重组,减少电流。而由于三维电池比传统电池吸收了更多光子,其涂层相应较薄,电子可以更快出去,减少了重组几率。

据介绍,纳米塔最底层是硅晶片,在其之上研究人员用照相平版技术涂抹了一层薄薄的铁,放入熔炉加热至780摄氏度。碳氢化合物气体通入熔炉后会分离成碳和氢。经过化学蒸气沉积过程,碳元素在晶片铁涂层上沉积,生长成多层的碳纳米管塔。之后,研究人员再在碳纳米管塔上覆盖一层碲化镉和硫化镉——它们负责发电。最终,再涂抹氧化铟锡(一种导电材料)作为电极。因此,纳米管在电池中既作为三维结构的支持架,又作为连接光电材料和硅晶片的导体,负责把电子传导至电极。

在应用方面,Ready首先把目光放在了航天飞机和卫星的电能提供上,因为这种电池不需要使用专门机械工具移动方位,使其保持面对太阳,减少了重量和复杂性。机械工具容易损坏,在太空中,是极难修理的。

当太阳90度角照射时,这种三维电池模型只有3.5%的发电率。但是,当光线从其他角度照射时,发电率更高,特别是45度时,发电率最高,达到7%。也就是说,电池在全天大部分时候都能以较高效率运行,每天有两次机会达到极值——早一次,晚一次。

但是,这个效率对于商业化使用而言还是太低了。Ready表示,在未来两年中,他将提高模型的尺寸,进行一系列测试以保证电池可以在火箭发射和太空的恶劣环境中工作。Ready还想研究出最理想的塔高和塔距,以及它们之间的位置和光线照射的角度。他也将尝试用其他半导体材料取代碲化镉,因为后者被认为具有毒性,不适合广泛的商业使用。选择针对不同应用的最佳光电材料也是研究目标之一。如果一切顺利,Ready估计,5到10年之内,这项技术的某些版本就有可能实现商业应用了。

“我们的目的是要获得每粒电池可用的光子。”Ready表示,由于可以捕获更多光线,电池尺寸可以减小,在卫星或者航天飞机上,这种新型电池将减轻重量、占用更少空间。增加了发电效率之后,可以改变现有太阳能电池的使用方式,用于更广泛的领域。胶体蓄电池——太阳能和风能发电的最佳储能蓄电池

常识告诉我们,风能、太阳能发电往往不会即发即用,总要部分储存备用,储能电池是太阳能发电系统的关键部分。太阳能发电的储能电池的基本要求应当是:规格齐全、安全可靠寿命长、放电效率高、深放电能力强、工作温度范围大、自放电率低、少维护或免维护。

综上所述,由于铅酸蓄电池具有以上的特点,所以应是风能、太阳能发电储能电池的首选。铅酸蓄电池技术成熟,规格品种齐全,价格最便宜。但普通富液铅酸蓄电池在温差大时会因温度过高造成干涸或寒冷时放不出电来,有时也会漏液,寿命普遍二、三年,其中特别优良的也只有四、五年。

现在胶体蓄电池是蓄电池中的高端产品,又以德国阳光公司的产品为最佳,它安全、可靠、寿命长。A-600系列保用15~18年,但价格太高。如A-600系列的2U-200AH要人民币2000元以上,而国内同规格的免维护铅酸蓄电池价格不及它的1/6,因此国内风能、太阳能发电不可能普遍使用进口产品。目前有国内企业生产一种胶体风能、太阳能发电储能电池,比铅酸蓄电池性能更优异也更实用。

这种胶体蓄电池从2V-3000AH到2V-2AH,从12V-200AH到12V-3AH等各种规格都有,即可做成管状正极板,也可做成涂膏的。隔板可以是AGM的也可做得PVC二氧化硅的或聚酯的。深放电达到了德国的标准。正负极接通短路放电21天,这种胶体蓄电池可以做到正负极接通28天,第一次充电就能达到95%以上。这种性能对储能电池尤其重要。在温度适应性上,这种胶体蓄电池可以在地表温度60℃~70℃的情况下不干涸,-30℃~-40℃低温下胶体蓄电池还能放出70%的电来。

蓄电池的功能就是将风能、太阳能的发电储存起来,如自放电大,那就失去储能作用了。这种胶体蓄电池的电阻率高(5mΩ以上),自放电率低,只有普通铅酸蓄电池的1/10。

文/钱学海

南京优德尔蓄电池有限公司

电话伏逆变电源系统的设计

1、系统的工作原理及其电路设计

光伏系统的总体框图如图1所示。

图1系统的总体框图

由图1可知,整个系统包含充电和逆变两个主要环节。太阳电池是本系统赖以工作的基础,它的效率直接决定系统的效率。

1.1充电控制部分

(1)太阳电池的工作特性

太阳电池作为光伏系统的基础,其工作特性,包括工作电压和电流与日照、太阳电池温度等有着密切的关系,图2、图3分别给出了太阳电池温度在25℃时,工作电压、电流和日照的关系曲线及太阳电池的输出功率和日照(S)、U之间的曲线。

从图2可以看出,曲线上任一点处的功率为P=UI,其值除和U、I有关外,还与日照(S)、太阳电池温度等有关。由图3进一步可知,由于太阳电池的工作效率等于输出功率与投射到太阳电池面积上的功率之比,为了提高本系统的工作效率,必须尽可能地使太阳电池工作在最大功率点处,这样就可以以功率尽可能小的太阳电池获得最多的功率输出。在图2和图3中,A、B、C、D、E点分别对应不同日照时的最大功率点。

图2工作电压、电流和日照关系曲线

图3输出功率和日照关系曲线

(2)太阳电池的最大功率点跟踪(MPPT)

由图1可知,系统首先采用太阳电池阵列对蓄电池进行充电,以化学能的形式将太阳能储存在蓄电池中。在这个过程中,通常采用自寻最优控制方式使太阳电池在最大功率点处工作。整个控制过程可以分解成两个阶段进行:

1)确定出太阳电池工作在最大功率点时的输出电压值Uref;

2)改变太阳电池对蓄电池的充电电流使太阳电池的输出电压稳定在Uref。

这两个阶段是由控制电路通过检测太阳电池的输出电压和电流,采用逐次比较法来实现的。

1.2逆变器设计

(1)逆变电路设计

正弦波逆变环节采用单相全桥电路,用IGBT作逆变电路的功率器件。IGBT是电压控制型器件,它集功率MOSFET和双极型晶体管的优点于一体,具有驱动电路简单、电压和电流容量大、工作频率高、开关损耗低、安全工作区大、工作可靠性高等优点。逆变器将蓄电池输出的直流电压转换成频率为50Hz的SPWM波,再经过滤波电感和工频变压器将其转换为220V的标准正弦波电压,采用这种方式系统结构简单,并且能有效地抑制波形中的高次谐波成分。

逆变器的工作方式采用SPWM控制方式,预先将0~360°的正弦值制成表格预存在EPROM中。开关模式信号是利用正弦波参考信号与一个三角载波信号互相比较来生成的,主要有单极性和双极性两种类型,在开关频率相同的情况下,由于双极性SPWM控制产生的正弦波,其中的谐波含量和开关损耗均大于单极性,故本系统采用的是单极性SPWM控制。

(2)控制核心

图4是系统的控制框图,控制芯片80C196MC是INTEL公司继MCS96之后,于1992年推出的真正16位单片机,其数据处理能力更强,指令的执行速度更快,尤其是其内部集成了最具特色的三相波形发生器(WG)单元,大大简化了用于SPWM波形发生的软件和外部硬件,从而使整个系统结构更加简单。为了使输出信号和它的互补信号不致同时有效,在芯片的内部设有死区发生器电路,从而避免了同一桥臂上的IGBT上下直通,保护了IGBT。提高太阳能电池板转换器的效率

由于燃烧化石燃料引起的全球变暖环境问题、不断上涨的原油和天然气价格、对原油依赖导致的政治困境,这些问题促使人们不断努力提高能源效率。

对于那些能源无法自给的国家,太阳能和其他替代能源拥有无可争议的优势,可帮助他们达到减少化石燃料消耗和实现能源独立的目的。用替代能源系统取代化石燃料能源,将对全球经济和人类生活产生重大影响。但问题是,用替代能源发电的成本要与化石燃料发电的成本相近或更少,这样才能真正减少原油的消耗。

在开发太阳能技术的过程中,人们把大部分注意力都放在了如何提高光电池的效率上。但另一个不能忽略的重要问题是,如何设计将电池产生的直流电转换成交流电的电路。为了在成本上与燃烧媒、石油等化石燃料的发电方式相竞争,设计师为提高逆变器每一个百分点的效率的努力都是非常重要的。

一些太阳能转换系统制造商把逆变器的转换效率从92%提高到了96%,这样他们在市场上成功的机会就会大增。有一种办法是设计没有变压器的DC/DC转换器。在转换系统中,由变压器导致的能量损失大约是2%~3%。因此就要使用更高电压的晶体管,这种晶体管已经可以在市场上买到了。逆变器的设计

在基于光电流的系统中,电源逆变器控制着太阳能板和电池,以及负载之间的电流,将太阳能板输出的变化幅度很大的直流电压转换成干净的50Hz或60Hz的正弦电流,输出给负载或回馈到电网中去。图1显示了逆变器在太阳能发电中的重要作用。图1

逆变器在提高太阳能转换效率的过程中发挥着重要作用

由于太阳能板的输出电压是变化的,要保持发电时尽可能的高效率是非常复杂的。完成这项任务的关键是检测最大功率点(maximumpowerpoint,MPP)。图2显示了最大功率点是如何随天气和电压而变的。图2

太阳能电池的输出电压随电压和天气而变

MPP跟踪技术可用来探测MPP,并调整DC/DC的输出电压转换,以使输出最大化。MPP跟踪可以使太阳能电池系统在冬天的整体效率提高1/3或更多,而这时也正是电力需求最高的时候。

控制器确定MPP的最常用算法是干扰电池板的工作电压,并检测输出。算法要在MPP点周围留出一个足够大的振荡范围,避免当天空掠过云彩时控制器对本地电源发出错误的扰动。电池的算法

扰动和检测算法的效率并不高,这是由于在每个周期内输出点都会偏离MPP。可以采用增量感应算法做为替代,这种方法可以很好地解决由于振荡导致的低效率,但又会设定一个本地峰值而不是真实的MPP,从而引发其他问题。将这两种算法结合起来,可以保持增量感应算法的高效率,同时又可以以一定间隔在很大范围内扫描,避免选择本地的峰值。

显然,这会给控制逆变器的控制器带来很大的计算负荷,控制器必须满足一些实时处理的挑战。

现在的数字信号控制器可以提供实时控制算法所需的高速运算能力。A/D转换器、PWM等集成外设使控制器可以直接检测输入信号,控制功率MOSFET,片上的flash闪存可用于编程和数据存储,通信端口简化了电能表和其他逆变器的组网过程。

在太阳能逆变器中的DSP控制器的高效率已经得到证实,可以把转换过程中的能量损失减少最多50%。NationalRenewableEnergyLaboratory对分布式电源技术LLC的研究表明,基于DSP的逆变器可以将1个10kW逆变器的制造和人工成本减少56%,同时还减少了逆变器的尺寸和重量。如果想了解更多信息,可从这个链接/ncpvprn/pdfs/33586076.pdf下载文件。

德州仪器公司的TMS320F28x数字信号控制器就是一个非常好的例子,它的性能高达150MIPS,可以用1个DSP控制逆变器中的多个转换级,而且还有富裕的处理能力,可用来执行MPP跟踪算法、电池充电监控、浪涌保护、记录数据和通信等额外的功能。图3显示了TMS320F28x控制多个转换级的框图。图3

TMS320F28x可控制多个转换级

控制器具有非常快速的12位16通道的A/D转换器,可以高精度地检测电压和电流来实现正弦波。为进行安全监控,A/D转换器还提供了电流检测功能。

此外,芯片上12个独立控制的增强型PWM通道具有可变的占空比,为转换器桥和电池充电电路提供了高速开关。

每个增强型PWM都有自己的定时器和相位寄存器,可对相延迟进行编程设定。可以对所有的增强型PWM进行同步,来驱动同样频率上的多个级。多个定时器提供了所需的时钟和快速的中断管理,支持额外的控制任务。包括CAN总线在内的多个标准通信端口为其他组件和系统提供了简便易用的接口。薄膜太阳能电池技术的简介

主要技术特点:

[1].可卷曲式薄膜电池生产方式降低了生产成本[2].采用非晶硅技术,原料来源丰富[3].以柔软的超薄聚合体作太阳能电池的衬底,轻便可折叠[4].产品耐用光伏技术与产业市场的简述光伏技术可直接将太阳的光能转换为电能,用此技术制作的光电池使用方便,特别是近年来微小型半导体逆变器迅速发展,促使其应用更加快捷。美、日、欧和发展中国家都制定出庞大的光伏技术发展计划,开发方向是大幅度提高光电池转换效率和稳定性,降低成本,不断扩大产业。目前已有80多个国家和地区形成商业化、半商业化生产能力,年均增长达16%,市场开拓从空间转向地面系统应用,甚至用于驱动交通工具。据报道,全球发展、建造太阳能住宅(光电池作屋顶、外墙、窗户等建材用)投资规模为600亿美元,而到2005年还会再翻一倍达1200亿美元,光伏技术制作的光电池有望成为21世纪的新能源。以下按其材料分类,展示光伏技术、产业及市场发展动向。晶体硅光电池晶体硅光电池有单晶硅与多晶硅两大类,用P型(或n型)硅衬底,通过磷(或硼)扩散形成Pn结而制作成的,生产技术成熟,是光伏市场上的主导产品。采用埋层电极、表面钝化、强化陷光、密栅工艺、优化背电极及接触电极等技术,提高材料中的载流子收集效率,优化抗反射膜、凹凸表面、高反射背电极等方式,光电转换效率有较大提高。单晶硅光电池面积有限,目前比较大的为Φ10至20cm的圆片,年产能力46MW/a。目前主要课题是继续扩大产业规模,开发带状硅光电池技术,提高材料利用率。国际公认最高效率在AM1.5条件下为24%,空间用高质量的效率在AM0条件约为13.5?18%,地面用大量生产的在AM1条件下多在11?18%之间。以定向凝固法生长的铸造多晶硅锭代替单晶硅,可降低成本,但效率较低。优化正背电极的银浆和铝浆丝网印刷,切磨抛工艺,千方百计进一步降成本,提高效率,大晶粒多晶硅光电池的转换效率最高达18.6%。非晶硅光电池a-Si(非晶硅)光电池一般采用高频辉光放电方法使硅烷气体分解沉积而成的。由于分解沉积温度低,可在玻璃、不锈钢板、陶瓷板、柔性塑料片上沉积约1μm厚的薄膜,易于大面积化(0.5m×1.0m),成本较低,多采用pin结构。为提高效率和改善稳定性,有时还制成三层pin等多层叠层式结构,或是插入一些过渡层。其商品化产量连续增长,年产能力45MW/a,10MW生产线已投入生产,全球市场用量每月在1千万片左右,居薄膜电池首位。发展集成型a-Si光电池组件,激光切割的使用有效面积达90%以上,小面积转换效率提高到14.6%,大面积大量生产的为8-10%,叠层结构的最高效率为21%。研发动向是改善薄膜特性,精确设计光电池结构和控制各层厚度,改善各层之间界面状态,以求得高效率和高稳定性。多晶硅光电池p-Si(多晶硅,包括微晶)光电池没有光致衰退效应,材料质量有所下降时也不会导致光电池受影响,是国际上正掀起的前沿性研究热点。在单晶硅衬底上用液相外延制备的p-Si光电池转换效率为15.3%,经减薄衬底,加强陷光等加工,可提高到23.7%,用CVD法制备的转换效率约为12.6-17.3%。采用廉价衬底的p-Si薄膜生长方法有PECVD和热丝法,或对a-Si:H材料膜进行后退火,达到低温固相晶化,可分别制出效率9.8%和9.2%的无退化电池。微晶硅薄膜生长与a-Si工艺相容,光电性能和稳定性很高,研究受到很大重视,但效率仅为7.7%。大面积低温p-Si膜与-Si组成叠层电池结构,是提高a-S光电池稳定性和转换效率的重要途径,可更充分利用太阳光谱,理论计算表明其效率可在28%以上,将使硅基薄膜光电池性能产生突破性进展。铜铟硒光电池

CIS(铜铟硒)薄膜光电池已成为国际光伏界研究开发的热门课题,它具有转换效率高(已达到17.7%),性能稳定,制造成本低的特点。CIS光电池一般是在玻璃或其它廉价衬底上分别沉积多层膜而构成的,厚度可做到2?3μm,吸收层CIS膜对电池性能起着决定性作用。现已开发出反应共蒸法和硒化法(溅射、蒸发、电沉积等)两大类多种制备方法,其它外层通常采用真空蒸发或溅射成膜。阻碍其发展的原因是工艺重复性差,高效电池成品率低,材料组分较复杂,缺乏控制薄膜生长的分析仪器。CIS光电池正受到产业界重视,一些知名公司意识到它在未来能源市场中的前景和所处地位,积极扩大开发规模,着手组建中试线及制造厂。碲化镉光电池CdTe(碲化镉)也很适合制作薄膜光电池,其理论转换效率达30%,是非常理想的光伏材料。可采用升华法、电沉积、喷涂、丝网印刷等10种较简便的加工技术,在低衬底温度下制造出效率12%以上的CdTe光电池,小面积CdTe光电池的国际先进水平光电转换率为15.8%,一些公司正深入研究与产业化中试,优化薄膜制备工艺,提高组件稳定性,防范Cd对环境污染和操作者的健康危害。砷化镓光电池GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右),产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用。以硅片作衬底,用MOCVD技术异质外延方法制造GaAs电池是降低成本很有希望的方法。其它材料光电池InP(磷化铟)光电池的抗辐射性能特别好,效率达17?19%,多用于空间方面。采用SiGe单晶衬底,研制出在AM0条件下效率大于20%的GaAs/Si异质结外延光电池,最高效率23.3%。Si/Ge/GaAs结构的异质外延光电池在不断开发中,控制各层厚度,适当变化结构,可使太阳光中各种波长的光子能量都得到有效利用,GaAs基多层结构光电池效率已接近40%。展望国内自1958年起研究光伏技术,目前正加速发展光伏技术,完善、提高及应用开发a-Si制备技术,约有30个科研单位和10个生产厂,生产能力超过5.5MW/a。由于受市场及材料问题的困扰,生产成本高,实际产量只有1.5-2MW/a。在2001-2020年,拟实施光伏电源推动计划,发展户用光伏(50W)、小型光伏(10-0KW)、特种光伏系统和联网光伏电站规划,以市场带动技术发展。人类生活的衣、食、住、行都离不开能源,开发新能源的光伏技术已成为国际上热门课题,每年都有大型国际性会议研讨光伏技术,MW级中、大型光伏电站正在全球建设和发展,10MW级的也已建成投产。展望21世纪,效率高、成本低的薄膜化光电池将占光伏技术的主导地位,附有太阳光发电系统的住宅将会逐渐普及,二十年代有望在空间建造太阳能电站,用微波或激光等电能传输技术将电能送到地面供电。有专家建议在各大洲建立大型光伏发电站,用超导电缆连接成全球性太阳能发电厂超导联网系统,使供电不受昼夜变化影响,迎来一个光伏技术的新时代。人类最理想的能源太阳能发电随着经济的发展、社会的进步,人们对能源提出越来越高的要求,寻找新能源成为当前人类面临的迫切课题。新能源要同时符合两个条件:一是蕴藏丰富不会枯竭;二是安全、干净,不会威胁人类和破坏环境。目前找到的新能源主要有两种,一是太阳能,二是燃料电池。另外,风力发电也可算是辅助性的新能源。其中,最理想的新能源是大阳能。照射在地球上的太阳能非常巨大,大约40分钟照射在地球上的太阳能,便足以供全球人类一年能量的消费。可以说,太阳能是真正取之不尽、用之不竭的能源。而且太阳能发电绝对干净,不产生公害。所以太阳能发电被誉为是理想的能源。太阳能发电系统由太阳能电池组.太阳能控制器,蓄电池(组)组成.如输出电源为交流220v或110v,还需配置逆变器,各部分的作用为:1.大阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分.其作用是将太阳的辐射能力转换为电能.或送往蓄电池中存储起来,或推动负载工作.2.太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态.并对蓄电池起到过充电保护.过放电保护的作用。在温差较大的地方.合格的控制器还应具备温度补偿的功能.其他附加功能如光控开关.时控开关都应当是控制器的可选项。3.蓄电池:一般为铅酸电池,小微型系统中.也可用镍氢电池镍锡电池或锂电池.其作用是在有光照时将太阳能电池板所发出的直流电能储存起来.到需要的时候再释放出来,4.逆变器:太阳能组件的直接输出一般都是12VDC,24VDC,48VDC.为能向220VAC的电器提供电能.需要将太阳能发电系统所发出的直流电能转换成交流电能.因此需要使用DC-AC逆变器.太阳能电池的原理及制作太阳能电池的原理及制作

太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。

制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。

一、硅太阳能电池

1.硅太阳能电池工作原理与结构

太阳能电池发电的原理主要是半导体的光电效应,一般的半导体主要结构如下:

当硅晶体中掺入其

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论