版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年广东省肇庆市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.A.1/4B.1/3C.1/2D.1
2.A.5B.6C.8D.10
3.随着互联网的普及,网上购物已经逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如表:根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是()A.7/15B.2/5C.11/15D.13/15
4.若lgx<1,则x的取值范围是()A.x>0B.x<10C.x>10D.0<x<10
5.A.B.{-1}
C.{0}
D.{1}
6.已知b>0,㏒5b=a,㏒b=c,5d=10,则下列等式一定成立的是()A.d=acB.a=cdC.c=adD.d=a+c
7.A.7B.8C.6D.5
8.已知互为反函数,则k和b的值分别是()A.2,
B.2,
C.-2,
D.-2,
9.“x=-1”是“x2-1=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
10.A.6B.7C.8D.9
二、填空题(10题)11.已知点A(5,-3)B(1,5),则点P的坐标是_____.
12.正方体ABCD-A1B1C1D1中AC与AC1所成角的正弦值为
。
13.已知函数则f(f⑶)=_____.
14.已知一个正四棱柱的底面积为16,高为3,则该正四棱柱外接球的表面积为_____.
15.设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2-x,则f⑴=______.
16.
17.
18.函数y=x2+5的递减区间是
。
19.设向量a=(x,x+1),b=(1,2),且a⊥b,则x=_______.
20.在P(a,3)到直线4x-3y+1=0的距离是4,则a=_____.
三、计算题(5题)21.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
22.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
23.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
24.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
25.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
四、简答题(10题)26.已知a是第二象限内的角,简化
27.已知双曲线C的方程为,离心率,顶点到渐近线的距离为,求双曲线C的方程
28.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.
29.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程
30.等比数列{an}的前n项和Sn,已知S1,S3,S2成等差数列(1)求数列{an}的公比q(2)当a1-a3=3时,求Sn
31.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.
32.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求实数x。
33.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。
34.已知等差数列的前n项和是求:(1)通项公式(2)a1+a3+a5+…+a25的值
35.如图,四棱锥P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求证:BC丄平面PAC。(2)求点B到平面PCD的距离。
五、解答题(10题)36.如图,在正方体ABCD-A1B1C1D1中,E,F分别为DD1,CC1的中点.求证:(1)AC⊥BD1;(2)AE//平面BFD1.
37.已知函数(1)f(π/6)的值;(2)求函数f(x)的最小正周期和单调递增区间.
38.
39.
40.
41.
42.如图,在三棱锥A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直线AD与平面BCD所成的角为45°点E,F分别是AC,AD的中点.(1)求证:EF//平面BCD;(2)求三棱锥A-BCD的体积.
43.如图,在四棱锥P-ABCD中,PC丄平面ABCD,AB//DC,DC丄AC.(1)求证:DC丄平面PAC;(2)求证:平面PAB丄平面PAC.
44.
45.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
六、单选题(0题)46.已知角α的终边经过点P(2,-1),则(sinα-cosα)/(sinα+cosα)=()A.3B.1/3C.-1/3D.-3
参考答案
1.C
2.A
3.C古典概型的概率公式.由题意,n=4500-200-2100-1000=1200.所以对网上购物“比较满意”或“满意”的人数为1200+2100=3300,由古典概型概率公式可得对网上购物“比较满意”或“满意”的概率为3300/4500=11/15.
4.D对数的定义,不等式的计算.由lgx<1得,所以0<x<10.
5.C
6.B对数值大小的比较.由已知得5a=6,10c=6,∴5a=10c,∵5d=10,∴5dc=10c,则55dc=5a,∴dc=a
7.B
8.B因为反函数的图像是关于y=x对称,所以k=2.然后把一式中的x用y的代数式表达,再把x,y互换,代入二式,得到m=-3/2.
9.A命题的条件.若x=-1则x2=1,若x2=1则x=±1,
10.D
11.(2,3),设P(x,y),AP=(x-5,y+3),AB=(-4,8),所以x-5=(-4)*(3/4)=-3;得x=2;y+3=8*(3/4)=6;得y=3;所以P(2,3).
12.
,由于CC1=1,AC1=,所以角AC1C的正弦值为。
13.2e-3.函数值的计算.由题意得,f(3)=㏒3(9-6)=1,所以f(f(3))=f⑴=2e-3.
14.41π,由题可知,底面边长为4,底面对角线为,外接球的直径即由高和底面对角线组成的矩形的对角线,所以外接球的直径为,外接球的表面积为。
15.-3.函数的奇偶性的应用.∵f(x)是定义在只上的奇函数,且x≤0时,f(x)-2x2-x,f(1)==-f(-1)=-2x(-1)2+(-l)=-3.
16.2
17.x+y+2=0
18.(-∞,0]。因为二次函数的对称轴是x=0,开口向上,所以递减区间为(-∞,0]。
19.-2/3平面向量的线性运算.由题意,得A×b=0.所以x+2(x+1)=0.所以x=-2/3.
20.-3或7,
21.
22.
23.
24.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
25.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
26.
27.
28.(1)(2)
29.点M是线段PB的中点又∵OM丄AB,∴PA丄AB则c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此椭圆的标准方程为
30.
31.(1)∵
∴又∵等差数列∴∴(2)
32.
∵μ//v∴(2x+1.4)=(2-x,3)得
33.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。
34.
35.证明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC则BC丄平面PAC(2)设点B到平面PCD的距离为hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1则△ADC为等边三角形,且AC=1PA=
PD=PC=2
36.(1)连接BD,由D1D⊥平面ABCD→D1D⊥AC又BD⊥AC,BD∩D1D=D,BD1,BD平面BDD1→AC⊥平面BDD1,又因为BD1包含于平面BDD1→AC⊥BD1.(2)连接EF,因为E,F分别为DD1,CC1的中点,所以EF//DC,且EF=DC,又DC//AB,且EF=AB所以四边形EFBA是平行四边形,所以AE//BF,又因为AE不包含平面BFD1,BF包含于平面BFD1,所以AE//平面BFD1
37.
38.
39.
40.
41.
42.
43.(1)∵PC丄平面ABCD,DC包含于平面ABCD,∴PC丄DC.又AC丄DC,PC∩AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论