




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年安徽省芜湖市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.已知双曲线x2/a2-y2/b2=1的实轴长为2,离心率为2,则双曲线C的焦点坐标是()A.(±1,0)B.(±2,0)C.(0,±2)D.(±1,0)
2.将三名教师排列到两个班任教的安排方案数为()A.5B.6C.8D.9
3.椭圆9x2+16y2=144短轴长等于()A.3B.4C.6D.8
4.下列函数是奇函数且在区间(0,1)内是单调递增的是()A.y=xB.y=lgxC.y=ex
D.y=cosx
5.直线4x+2y-7=0和直线3x-y+5=0的夹角是()A.30°B.45°C.60°D.90°
6.有四名高中毕业生报考大学,有三所大学可供选择,每人只能填报一所大学,则报考的方案数为()A.
B.
C.
D.
7.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法
8.A.B.C.D.
9.A≠ф是A∩B=ф的()A.充分条件B.必要条件C.充要条件D.无法确定
10.(x+2)6的展开式中x4的系数是()A.20B.40C.60D.80
二、填空题(10题)11.已知向量a=(1,-1),b(2,x).若A×b=1,则x=______.
12.若复数,则|z|=_________.
13.lg5/2+2lg2-(1/2)-1=______.
14.设全集U=R,集合A={x|x2-4<0},集合B={x|x>3},则_____.
15.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是_______.
16.
17.的展开式中,x6的系数是_____.
18.则a·b夹角为_____.
19.秦九昭是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九昭算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九昭算法求某多项式值的一个实例,若输入n,x的值分别为3,4,则输出v的值为________.
20.若=_____.
三、计算题(5题)21.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
22.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
23.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
24.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
25.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
四、简答题(10题)26.平行四边形ABCD中,CBD沿对角线BD折起到平面CBD丄平面ABD,求证:AB丄DE。
27.已知cos=,,求cos的值.
28.计算
29.三个数a,b,c成等差数列,公差为3,又a,b+1,c+6成等比数列,求a,b,c。
30.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。
31.如图四面体ABCD中,AB丄平面BCD,BD丄CD.求证:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.
32.化简a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)
33.已知a是第二象限内的角,简化
34.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。
35.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.
五、解答题(10题)36.已知等差数列{an}的前72项和为Sn,a5=8,S3=6.(1)求数列{an}的通项公式;(2)若数列{an}的前k项和Sk=72,求k的值.
37.已知函数f(x)=sinx+cosx,x∈R.(1)求函数f(x)的最小正周期和最大值;(2)函数y=f(x)的图象可由y=sinx的图象经过怎样的变换得到?
38.
39.已知函数f(x)=log21+x/1-x.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)用定义讨论f(x)的单调性.
40.证明上是增函数
41.已知数列{an}是的通项公式为an=en(e为自然对数的底数);(1)证明数列{an}为等比数列;(2)若bn=Inan,求数列{1/bnbn+1}的前n项和Tn.
42.已知a为实数,函数f(x)=(x2+l)(x+a).若f(-1)=0,求函数:y=f(x)在[-3/2,1]上的最大值和最小值。
43.已知函数f(x)=2sin(x-π/3).(1)写出函数f(x)的周期;(2)将函数f(x)图象上所有的点向左平移π/3个单位,得到函数g(x)的图象,写出函数g(x)的表达式,并判断函数g(x)的奇偶性.
44.
45.已知椭圆的中心为原点,焦点在x轴上,离心率为,且经过点M(4,1),直线l:y=x+m交椭圆于异于M的不同两点A,B直线MA,MB与x轴分别交于点E,F.(1)求椭圆的标准方程;(2)求m的取值范围.
六、单选题(0题)46.拋物线y2-4x+17=0的准线方程是()A.x=2B.x=-2C.x=1D.x=-1
参考答案
1.B双曲线的定义.∵2a=2,∴a=1,又c/a=2,∴.c=2,∴双曲线C的焦点坐标是(±2,0).
2.B
3.C
4.A由奇函数定义已知,y=x既是奇函数也单调递增。
5.B
6.C
7.C为了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,这种方式具有代表性,比较合理的抽样方法是分层抽样。
8.B
9.A
10.C由二项式定理展开可得,
11.1平面向量的线性运算.由题得A×b=1×2+(-1)×x=2-x=1,x=1。
12.
复数的模的计算.
13.-1.对数的四则运算.lg5/2+21g2-〔1/2)-1=lg5/2+lg22-2=lg(5/2×4)-2=1-2=-1.
14.B,
15.150.分层抽样方法.该校教师人数为2400×(160-150)/160=150(人).
16.√2
17.1890,
18.45°,
19.100程序框图的运算.初始值n=3,x=4,程序运行过程如下表所示:v=1,i=2,v=1×4+2=6,i=1,v=6×4+l=25,i=0,v=25×4+0=100,i=-1跳出循环,输出v的值为100.
20.
,
21.
22.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
23.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
24.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
25.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
26.
27.
28.
29.由已知得:由上可解得
30.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。
31.
32.原式=
33.
34.
35.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=
36.(1)设等差数列{an}的公差为d由题
37.(1)函数f(x)=sinx+cosx=sin(x+π/4),∴f(x)的最小正周期是2π,最大值是(2)将y=sinx的图象向左平行移动π/4个单位,得到sin(x+π/4)的图象,再将y==sin(x+π/4)的图象上每-点的纵坐标伸长到原来的倍,横坐标不变,所得图象即为函数y=f(x)的图象.
38.
39.(1)要使函数f(x)=㏒21+x/1-x有意义,则须1+x/1-x>0解得-1<x<1,所以f(x)的定义域为{x|-1<x<1}.(2)因为f(x)的定义域为{x|-1<x<1},且f(-x)=㏒2(1+x/1-x)-1=-㏒21+x/1-x=-f(x).所以f(x)是定义在(-1,1)上的奇函数.(3)设-1<x1<x2<1,则f(x1)-f(x2)=log1+x1/1+x2=㏒(1+x1)(1-x2)f(1-x1)(1+x2)∵-1<x1<x2<1
40.证明:任取且x1<x2∴即∴在是增函数
41.
42.
43.(1)f(x)=2sin(x-π/4),T=2π/|π|=2π(2)由题意得g(x)=f(x+π/3)=2sin[(x+π/3)-π/3]=2sinx,x∈R.∵g(-x)=2sin(-x)=-2sinx=-g(x),为奇函数.
44.
45.(1)设椭圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 毕业班学生心理疏导计划
- 口算除法 (教学设计)-2023-2024学年三年级下册数学人教版
- 投资咨询工程师常见错误试题及答案2024
- 注册会计师跨国公司财务试题及答案
- Unit 4 Plants around us大单元备课 (教学设计)-2024-2025学年人教PEP版(2024)英语三年级上册
- 2024年预算员考试实务试题及答案分享
- 品牌管理的重要性试题及答案
- 理解全媒体运营师的数据驱动营销:试题及答案
- 2024年人力资源管理师考试精要试题及答案
- 2024人力资源管理师科目试题及答案
- 稀土功能材料及应用
- 算24点教学讲解课件
- 人教版五年级上册科学第五单元《太阳能热水器》单元试题(含答案)
- 【骨科-关节资料】髌股关节置换
- 执业助理医师报考执业医师执业期考核证明【范本模板】
- 矫治器及其制作技术-固定矫治器(口腔正畸学课件)
- 新概念二册课文电子版
- 动物传染病的传染与流行过程(动物传染病)
- CNAS-GL039 分子诊断检验程序性能验证指南
- 2018年中考化学双向细目表
- 院内按病种分值付费(DIP)专题培训
评论
0/150
提交评论