版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
理解命题,定理及证明的概念,会区分命题的题设和结论.会判断真假命题,知道证明的意义及必要性,了解反例的作用.学习目标1.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2.等式两边加同一个数,结果仍是等式.3.对顶角相等.分析下列语句:以上语句都是对一件事情作出“是”或“不是”的判断.问题引入1.画线段AB=CD.2.点P在直线AB外.3.对顶角相等吗?分析下列语句:以上语句没有对事情作出“是”或“不是”的判断,只是对事情进行了描述。新课引入命题的定义
判定一件事情的语句,叫做命题.2.如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.
如:画线段AB=CD.1.只要对一件事情作出了判断,不管正确与否,都是命题.如:相等的角是对顶角.注意:像这样判断一件事情的语句,叫作命题(proposition).一、命题的概念知识精讲
例1
判断下列四个语句中,哪个是命题,哪个不是命题?并说明理由:(1)对顶角相等吗?(2)画一条线段AB=2cm;(3)两条直线平行,同位角相等;(4)相等的两个角,一定是对顶角.解:(3)(4)是命题,(1)(2)不是命题.理由如下:(1)是问句,故不是命题;(2)是做一件事情,也不是命题.典例解析2)两条直线相交,有且只有一个交点()5)取线段AB的中点C;()1)长度相等的两条线段是相等的线段吗?()6)画两条相等的线段()练一练:判断下列语句是不是命题?是用“√”,不是用“×表示.3)不相等的两个角不是对顶角()4)相等的两个角是对顶角()×√××√√针对练习观察下列命题,你能发现这些命题有什么共同的结构特征?与同伴交流.(1)如果两个三角形的三条边相等,那么这两个三角形的周长相等;(2)如果两个数的绝对值相等,那么这两个数也相等;(3)如果一个数的平方等于9,那么这个数是3.都是“如果……那么……”的形式二、命题的结构知识精讲
命题一般都可以写成“如果……那么……”的形式.
1.“如果”后接的部分是题设,
2.“那么”后接的部分是结论.如命题:熊猫没有翅膀.改写为:如果这个动物是熊猫,那么它就没有翅膀.注意:添加“如果”“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套.知识精讲命题题设结论已知事项由已知事项推出的事项
两直线平行,
同位角相等题设(条件)结论命题的组成:知识精讲把下列命题改写成“如果……那么……”的形式.并指出它的题设和结论.1.对顶角相等;2.内错角相等;3.两直线被第三条直线所截,同位角相等;4.平行于同一直线的两直线平行;5.等角的补角相等.针对练习特别规定:正确的命题叫真命题,错误的命题叫假命题.命题1:“如果一个数能被4整除,那么它也能被2整除”观察下列命题,你能发现这些命题有什么不同的特点吗?命题1是一个正确的命题;命题2是一个错误的命题.命题2:“如果两个角互补,那么它们是邻补角”知识精讲(1)同旁内角互补()(4)两点可以确定一条直线()(7)互为邻补角的两个角的平分线互相垂直()(2)一个角的补角大于这个角()判断下列命题的真假.真的用“√”,假的用“×表示.(5)两点之间线段最短()(3)相等的两个角是对顶角()×√(6)同角的余角相等()×√√√×针对练习“因为早上我发现张三从玉米地那边过来,把一袋东西背回家,还发现我地里的玉米被人偷了,我知道张三家没有种玉米。所以我家玉米肯定是张三偷的.”片段1:一天早上,李老汉来到衙门里告状说:张三刚刚在他地里偷了一袋子玉米.吕县令立即派衙役将张三拘捕到县衙审讯:吕县令问李老汉:“你怎知是张三偷了你的玉米?”李老汉想证明什么?他是怎么证明的?这种从已知条件出发(列出理由),推断出结论的证明方法,叫综合法.综合法是最常用的证明方法.根据李老汉的证明,你能断定玉米是张三偷的吗?你觉得有疑点吗?知识精讲片段2:县官一时拿不定主意,就问旁边的县丞道:“师爷,你怎么看?”县丞说“这事要证明是张三干的,还得弄清那袋子里装的是不是刚捌的玉米,还要看看地里的脚印是不是张三的才行。如果袋子里装的是刚捌的玉米,且地里的脚印是张三的,那就一定是他偷的。”从结论出发,逆着寻找所需要的条件的思考过程,叫分析.在分析的过程中,如果发现所需要的条件,都已具备或可从已知条件中推得.那么证明就很容易了.知识精讲分析:要证明AB,CD平行,就需要同位角相等的条件,图中∠1与∠3就是同位角.我们只要找到:能说明它俩相等的条件就行了.从图中,我们可以发现:∠2与∠3是对顶角,所以∠3=∠2.这样我们就找到了∠1与∠3相等的确切条件了.例2:
如图,∠1=∠2,试说明直线AB,CD平行?典例解析证明:因为∠2与∠3是对顶角,所以∠3=∠2又因为∠1=∠2,所以∠1=∠3,且∠1与∠3是同位角,所以AB与CD平行.证明:∵∠2与∠3是对顶角,∴∠3=∠2又∵∠1=∠2∴∠1=∠3,∴AB∥CD例2:
如图,∠1=∠2,试说明直线AB,CD平行?典例解析1.数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做基本事实.两点确定一条直线.两点间线段最短.经过直线外的一点有且仅有一条直线与已知直线平行.直线的基本事实:线段的基本事实:平行线的基本事实:三、基本事实的概念知识精讲2.有些命题是基本事实,还有些命题它们的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据.同角或等角的补角相等.2.余角的性质:同角或等角的余角相等.4.垂线的性质:①在同一平面内过一点有且只有一条直线与已知直线垂直;1.补角的性质:3.对顶角的性质:对顶角相等.②垂线段最短.学过的定理:四、定理的概念知识精讲
在很多情况下,一个命题的正确性需要经过推理才能作出判断,这个推理过程叫作证明.注意:证明的每一步推理都要有根据,不能“想当然”.五、证明的概念知识精讲例3已知:b∥c,
a⊥b.求证:a⊥c.证明:∵
a⊥b(已知)∴∠1=90°(垂直的定义)又
b
∥c(已知)∴∠2=∠1=90°(两直线平行,同位角相等)∴
a⊥c(垂直的定义).abc12典例解析确定一个命题是假命题的方法:例如,要判定命题“相等的角是对顶角”是假命题,可以举出如下反例:如图,OC是∠AOB的平分线,
∠1=∠2,但它们不是对顶角.))12AOCB只要举出一个例子(反例):它符合命题的题设,但不满足结论即可.思考:如何判定一个命题是假命题呢?六、举反例知识精讲1.下列语句中,不是命题的是(
)A.两点之间线段最短B.对顶角相等C.不是对顶角不相等D.过直线AB外一点P作直线AB的垂线D2.下列命题中,是真命题的是(
)A.若a·b>0,则a>0,b>0B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0且b=0D.若a·b=0,则a=0或b=0D达标检测3.下列句子哪些是命题?是命题的,指出是真命题还是假命题?
1)猪有四只脚;
2)内错角相等;
3)画一条直线;
4)四边形是正方形;
5)你的作业做完了吗?
6)内错角相等,两直线平行;
7)垂直于同一直线的两直线平行;
8)过点P画线段MN的垂线;
9)x>2.是真命题否是假命题是假命题否是真命题是假命题否否达标检测4.举反例说明下列命题是假命题.(1)若两个角不是对顶角,则这两个角不相等;(2)若ab=0,则a+b=0.解:(1)两条直线平行形成的内错角,这两个角不是对顶角,但是它们相等;(2)当a=5,b=0时,ab=0,但a+b≠0.达标检测5.在下面的括号内,填上推理的依据.
如图,AB∥CD,CB∥DE,求证∠B+∠D=180°证明:
∵AB∥CD,
∴
∠B=∠C()
∵CB∥DE
∴
∠C+∠D=180°()
∴
∠B+∠D=180°()等量代换两直线平行,内错角相等两直线平行,同旁内角互补达标检测证明:∵AB∥CD(已知),∴∠BPQ=∠CQP(两直线平行,内错角相等).又∵PG平分∠BPQ,QH平分∠CQP(已知),∴∠GPQ=∠BPQ,∠HQP=∠CQP(角平分线的定义),∴∠GPQ=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年房产认购专项协议范本
- 2024年成品油销售协议模板
- 2023-2024学年珠海市全国大联考(江苏卷)高三第二次数学试题试卷
- 2024年高效代理合作招募协议模板
- 2024年幼教岗位聘用协议范本
- 彩钢瓦安装工程协议模板2024年
- 2024年海水产品长期供应协议模板
- 2024年度润滑油分销协议范本
- 文书模板-《硬件设计合同》
- 2024房产居间服务协议模板
- SAP增强实现批次自动编号
- 微积分方法建模12传染病模型数学建模案例分析
- 卫浴产品世界各国认证介绍
- 江苏省职工代表大会操作办法.doc
- 湘教版小学音乐五年级上册教学计划
- sch壁厚等级对照表
- 高新技术企业认定自我评价表
- 药物分类目录
- 中石油-细节管理手册 03
- 柿子品种介绍PPT课件
- 全国重点文物保护单位保护项目安防消防防雷计划书
评论
0/150
提交评论