同态滤波及倒谱分析_第1页
同态滤波及倒谱分析_第2页
同态滤波及倒谱分析_第3页
同态滤波及倒谱分析_第4页
同态滤波及倒谱分析_第5页
已阅读5页,还剩50页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

同态滤波及倒谱分析第一页,共五十五页,2022年,8月28日5.1概述在这一章中讨论的同态处理方法是一种非线性方法.它能将两个信号通过乘法合成的信号或通过卷积合成的信号分开.对于语音信,我们的目的是要从声道冲激响应分量与激励分量的卷积中分开各原始分量本章主要讨论卷积同态系统,以及它在语音处理中的应用,如基音检测、共振峰分析以及同态声码器等.一帧语音信号=声门激励信号*声道冲激响应注意:此处符号*表示卷积运算语音分析的目的:将激励源与声道冲激响应分开来分别进行研究,它们被广泛用于各种语音编码、合成、识别以及说话人识别。第二页,共五十五页,2022年,8月28日5.1概述“解卷”,即将各卷积分量分开,有时也称作反卷积。解卷算法分为两大类:第一类算法是“参数解卷”,包括线性预测分析等。第二类为“非参数解卷”,同态信号处理是其中最重要的一种。对语音信号解卷的好处:1)可对激励源进行研究,因而可以了解语音段是属于浊音还是清音,及确定浊音的基音频率2)可对声道冲激响应进行研究,因而可以了解声道特性及共振峰第三页,共五十五页,2022年,8月28日5.1概述分离组合信号所采用的方法:1)分离加性信号常采用线性滤波的方法:2)分离非加性组合(如乘性或卷积性组合)信号,常采用同态滤波技术。第四页,共五十五页,2022年,8月28日同态信号处理也称为同态滤波,它实现了将卷积关系变换为求和关系的分离处理。为了分离加性组合信号,常采用线性滤波方法。为了分离非加性组合(如乘积性或卷积性组合)信号,常采用同态滤波技术。同态滤波是一种非线性滤波,但它服从广义叠加原理。对语音信号进行同态分析后将得到其倒谱参数,所以同态分析也称为倒谱分析。由于对语音信号分析是以帧为单位进行的,所以得到的是短时倒谱参数。无论是对于语音通信、语音合成还是语音识别倒谱参数优点:所含的信息比其他参数多,也就是说语音质量好、识别正确率高;倒谱参数缺点:是运算量较大。尽管如此,倒谱分析仍是一种有效的语音信号分析方法。5.1概述第五页,共五十五页,2022年,8月28日5.1概述广义叠加原理小四边形表示输入矢量之间的运算、小三角形表示输入矢量与标量之间的运算、小圆形表示输出矢量之间的运算、小菱形表示输出矢量与标量之间的运算。输入矢量之间的运算和输出矢量之间的运算可以为:加法、乘法或卷积等运算。输入矢量或输出矢量与标量之间的运算可以为:乘法、幂或开方等运算第六页,共五十五页,2022年,8月28日5.1概述广义叠加原理数学表达:同态系统的规范形式:第七页,共五十五页,2022年,8月28日5.2同态信号处理的基本原理同态信号处理的实质:把非线性问题转化为线性问题来处理。分类:1)乘积同态处理2)卷积同态处理图5-1卷积同态系统的模型该系统的输入输出都是卷积性运算。第八页,共五十五页,2022年,8月28日5.2同态信号处理的基本原理卷积同态处理的基本原理:同态处理理论:任何同态系统都能表示为三个同态系统的级联,即同态系统可分解为:两个特征系统(它们只取决于信号的组合规则)第一个系统以若干信号的卷积组合作为其输入,并将它变换成对应输出的相加性组合。第二个系统是一个普通线性系统,它服从叠加原理。一个线性系统(它仅取决于处理的要求)。第三个系统是第一个系统的逆变换,即它将信号的相加性组合反变换为卷积组合。这种同态系统的重要性在于,可以使这种系统的设计简化为线性系统的设计问题。第九页,共五十五页,2022年,8月28日5.2同态信号处理的基本原理卷积特征子系统:图5-2同态系统的组成第十页,共五十五页,2022年,8月28日5.2同态信号处理的基本原理加性信号的Z变换或逆Z变换仍然是加性信号,因而这种时域信号可以用线性系统处理。第十一页,共五十五页,2022年,8月28日5.2同态信号处理的基本原理

线性系统

第十二页,共五十五页,2022年,8月28日5.2同态信号处理的基本原理卷积逆特征子系统:经过线性处理后,若将其恢复为卷积性信号,可以通过逆特征系统,它是特征系统的逆变换。第十三页,共五十五页,2022年,8月28日5.2同态信号处理的基本原理返回第十四页,共五十五页,2022年,8月28日5.3复倒谱和倒谱---两种同态处理方法复倒谱定义:是一个时域序列,是x(n)的“复倒频谱”,简称为“复倒谱”,也称作对数复倒谱。复对数函数的单值性原则:它必须是一对一的变换;它必须满足广义的叠加原理;它必须是有效的z变换;它必须有唯一的定义(必须选定一个收敛域)。第十五页,共五十五页,2022年,8月28日1.复对数的多值性问题:

并不是一对一的变换5.3复倒谱和倒谱

第十六页,共五十五页,2022年,8月28日5.3复倒谱和倒谱

虽然通过用其主值来取代原值的手段来解决复对数中不明确的问题是相当普遍的,但是不能在这里采用此手段,因为它通常会使运算不再遵循广义叠加原理:第十七页,共五十五页,2022年,8月28日5.3复倒谱和倒谱但两个角度之和的主值通常不等于它们各自相应的主值之和。第十八页,共五十五页,2022年,8月28日5.3复倒谱和倒谱2.复对数函数的解析性问题:为了让同态滤波系统成为一个可实现系统,必须是因果、稳定和唯一的,因此的收敛域包含单位圆,且在此收敛域内是z的解析函数,即必须是关于的连续函数,但不是的连续函数。第十九页,共五十五页,2022年,8月28日5.3复倒谱和倒谱第二十页,共五十五页,2022年,8月28日5.3复倒谱和倒谱第二十一页,共五十五页,2022年,8月28日5.3复倒谱和倒谱倒谱(倒频谱/对数倒频谱)

:与复倒谱不同的是,在倒谱情况下一个序列经过正逆两个特征系统变换后,不能还原成自身,因为c(n)中只有幅值信息而无相位信息。尽管如此,但仍可用于语音信号分析中,因为人们的听觉对语音的感知特征主要包含在幅度信息中,相位信息不起主要作用。第二十二页,共五十五页,2022年,8月28日c(n)即是中的偶对称分量。是时间序列,因为它是从频率逆变换得到的。如果c1(n)和c2(n)分别是x1(n)和x2(n)的倒谱,并且x(n)=x1(n)*x2(n);那么x(n)的倒谱为c(n)=c1(n)+c2(n)。与复倒谱不同的是,在倒谱情况下一个序列经过正逆两个特征系统变换后,不能还原成自身;这是因为在计算倒谱的过程中将序列的相位信息丢失了。5.3复倒谱和倒谱第二十三页,共五十五页,2022年,8月28日5.4语音信号两个卷积分量复倒谱的性质语音信号可看作是声门激励信号和声道冲激响应的卷积1.声门激励信号的复倒谱:(主要分析浊音激励)第二十四页,共五十五页,2022年,8月28日5.4语音信号两个卷积分量复倒谱的性质其中2)对上式取对数,并将对数部分展开为泰勒级数:第二十五页,共五十五页,2022年,8月28日5.4语音信号两个卷积分量复倒谱的性质结论:一个有限长的周期冲激序列,其复倒谱除原点处也是一个周期冲激序列,且周期不变,只是序列变为无限长序列,同时其振幅随k的增大而衰减,且比原序列衰减更快。除原点外,可以采用“高复倒谱窗”从语音信号的频谱中提取浊音激励信号的频谱(对于清音激励,也只损失了0≤n≤N-1的一部分的激励信息),从而可使用复倒谱提取基音。第二十六页,共五十五页,2022年,8月28日5.4语音信号两个卷积分量复倒谱的性质2.声道冲激响应序列的复倒谱:若用最严格的零极点模型,则有第二十七页,共五十五页,2022年,8月28日5.4语音信号两个卷积分量复倒谱的性质第二十八页,共五十五页,2022年,8月28日5.4语音信号两个卷积分量复倒谱的性质第二十九页,共五十五页,2022年,8月28日5.4语音信号两个卷积分量复倒谱的性质第三十页,共五十五页,2022年,8月28日5.4语音信号两个卷积分量复倒谱的性质第三十一页,共五十五页,2022年,8月28日5.4语音信号两个卷积分量复倒谱的性质语音信号的复倒谱第三十二页,共五十五页,2022年,8月28日5.5避免相位卷绕的算法相位卷绕:求复倒谱中的取对数运算存在的相位多值性问题,我们称之为相位卷绕。它的不确定性将使复倒谱恢复语音的运算产生错误。三种避免相位卷绕的方法(非取相位主值的方法)第三十三页,共五十五页,2022年,8月28日5.5避免相位卷绕的算法1.微分法:本质:利用傅里叶变换微分、对数微分特性。微分特性:x(n)的复倒谱对数谱第三十四页,共五十五页,2022年,8月28日5.5避免相位卷绕的算法第三十五页,共五十五页,2022年,8月28日5.5避免相位卷绕的算法图5-4利用傅里叶变换的微分特性求复倒谱的框图缺点:会引起严重的频谱混叠原因:nx(n)频谱中的高频分量比x(n)的多,有效最高频率比x(n)的大,若仍按原取样率分析将引起此现象。第三十六页,共五十五页,2022年,8月28日5.5避免相位卷绕的算法2.最小相位信号法:本质:由最小相位信号序列的复倒谱性质及希尔伯特变换的性质推导而来。适用范围:是一种好方法,但仅适用于最小相位信号。第三十七页,共五十五页,2022年,8月28日5.5避免相位卷绕的算法原理:第三十八页,共五十五页,2022年,8月28日5.5避免相位卷绕的算法第三十九页,共五十五页,2022年,8月28日5.5避免相位卷绕的算法图5-5因果序列的分解和恢复第四十页,共五十五页,2022年,8月28日5.5避免相位卷绕的算法图5-6最小相位信号法求复倒谱第四十一页,共五十五页,2022年,8月28日5.5避免相位卷绕的算法3.递推法:适用范围:仅限于最小相位信号。基本原理:设x(n)为最小相位序列第四十二页,共五十五页,2022年,8月28日5.5避免相位卷绕的算法第四十三页,共五十五页,2022年,8月28日5.5避免相位卷绕的算法是一个因果序列:是一个最小相位序列:第四十四页,共五十五页,2022年,8月28日5.5避免相位卷绕的算法这是一个递推公式,求出n=0时的值,所有其它值均可求出。但n=0要用其他办法求出第四十五页,共五十五页,2022年,8月28日5.5避免相位卷绕的算法第四十六页,共五十五页,2022年,8月28日5.5避免相位卷绕的算法缺陷:对某些信号,若初值x(0)过小,则复倒谱在递推计算时将出现发散的情况。第四十七页,共五十五页,2022年,8月28日5.6语音信号的复倒谱分析实例在进行语音倒谱和复倒谱分析之前必须对语音信号进行加窗处理:1.倒谱分析:第四十八页,共五十五页,2022年,8月28日5.6语音信号的复倒谱分析实例在x(n)是最小相位序列的情况下,复倒谱与倒谱之间有以下的关系:由于倒谱等于复倒谱的偶对称部分,故有着与复倒谱相同的特性,且为偶函数。第四十九页,共五十五页,2022年,8月28日5.6语音信号的复倒谱分析实例先用窗w(n)选择一个语音段,再计算复倒谱,然后将欲得到的复倒谱分量用一个“复倒谱窗”l(n)分离出来。所得到的窗选复倒谱用逆特征系统进行处理以恢复所需的卷积分量。图5-8语音同态滤波系统的构成第五十页,共五十五页,2022年,8月28日5.6语音信号的复倒谱分析实例2.倒谱分析实例:图(a)是一段加窗语音的时域波形图,窗长为15ms,fs=10kHz,因此共包括150个语音样点。这段语音用海明窗加权,基音周期为Np=45;图(b)所示为其对数幅度谱,其谐波分量是由输入信号的周期性所引起的;图(c)显示出相位主值的不连续性,第五十一页,共五十五页,2022年,8月28日5.6语音信号的复倒谱分析实例2.倒谱分析实例:图(d)所示的避免了卷绕的相位谱就没有不连续性。图(b)和图(d)合在一起构成图(e)所示复倒谱的傅里叶变换。图(e)中正负两侧等于基音周期的时间点上出现的尖峰,迅速衰减的低复倒谱域分量表示声道、声门激励以及辐射的组合效应。图(f)所示为倒谱,它只是对对数幅度谱进行傅里叶反变换(即设相位恒为零)。实际上倒谱也表现出和复倒谱相同的一般性质,这是因为倒谱是复倒谱的偶对称分量。由图(f)可见,倒谱是一个偶函数;这是因为它是一个偶对称分量。第五十二页,共五十五页,2022年,8月28日5.6语音信号的复倒谱分析实例图5-9浊音语音用同态滤波分离出声门激励和声道响应的示例(a)声道的对数幅频特性的估值;(b)声道相频特性的估值;(c)声道冲激响应的估值;(d)声门激励脉冲的估值其中图(a)和图(b)为特征系统中得到的对数幅度谱及相位谱,经过低复倒谱窗l(n)和D*-1[]之后的输出波形即声道冲激响应如图(c)所示。图(d)给出了声门激励信号。可以看出,声门激励波形近似于一个冲激串,其幅度随

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论