版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年江苏省徐州市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(22题)1.已知甲、乙、丙3类产品共1200件,且甲、乙、丙3类产品的数量之比为3:4:5,现采用分层抽样的方法从中抽取60件,则乙类产品抽取的件数是()A.20B.21C.25D.40
2.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=1/xB.y=ex
C.y=-x2+1D.y=lgx
3.A.(-2.3)B.(2,3]C.[2,3)D.[-2,3]
4.已知a是函数f(x)=x3-12x的极小值点,则a=()A.-4B.-2C.4D.2
5.A.6B.7C.8D.9
6.cos240°=()A.1/2
B.-1/2
C./2
D.-/2
7.在△ABC,A=60°,B=75°,a=10,则c=()A.
B.
C.
D.
8.直线L过(-1,2)且与直线2x-3y+5=0垂直,则L的方程是()A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+6=0D.2x-3y+8=0
9.等差数列中,a1=3,a100=36,则a3+a98=()A.42B.39C.38D.36
10.A.2B.3C.4D.5
11.椭圆x2/4+y2/2=1的焦距()A.4
B.2
C.2
D.2
12.“a,b,c都不等于0”的否定是A.a,b,c都等于0B.a,b,c不都等于0C.a,b,c中至少有一个不等于0D.a,b,c中至少有一个等于0
13.A.{1,0}B.{1,2}C.{1}D.{-1,1,0}
14.已知,则点P(sina,tana)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限
15.A.B.C.
16.A.第一象限角B.第二象限角C.第一或第二象限角D.小于180°的正角
17.焦点在y轴的负半轴上且焦点到准线的距离是2的抛物线的标准方程是()A.y2=-2x
B.x2=-2y
C.y2=-4x
D.x2=-4y
18.设集合U={1,2,3,4,5,6},M={1,3,5},则C∪M=()A.{2,4,6}B.{1,3,5}C.{1,2,4}D.U
19.若a<b<0,则下列结论正确的是()A.a2<b2
B.a3<b<b3</b
C.|a|<|b|
D.a/b<1
20.A.B.C.D.
21.函数y=Asin(wx+α)的部分图象如图所示,则()A.y=2sin(2x-π/6)
B.y=2sin(2x-π/3)
C.y=2sin(x+π/6)
D.y=2sin(x+π/3)
22.“x=-1”是“x2-1=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
二、填空题(10题)23.如图所示的程序框图中,输出的S的值为______.
24.若长方体的长、宽、高分别为1,2,3,则其对角线长为
。
25.已知一个正四棱柱的底面积为16,高为3,则该正四棱柱外接球的表面积为_____.
26.
27.数列{an}满足an+1=1/1-an,a2=2,则a1=_____.
28.若事件A与事件ā互为对立事件,且P(ā)=P(A),则P(ā)=
。
29.
30.在:Rt△ABC中,已知C=90°,c=,b=,则B=_____.
31.若集合,则x=_____.
32.等差数列{an}中,已知a4=-4,a8=4,则a12=______.
三、计算题(10题)33.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
34.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
35.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
36.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
37.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
38.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
39.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
40.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
41.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
42.解不等式4<|1-3x|<7
四、简答题(10题)43.已知等差数列的前n项和是求:(1)通项公式(2)a1+a3+a5+…+a25的值
44.证明上是增函数
45.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程
46.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。
47.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。
48.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.
49.计算
50.求经过点P(2,-3)且横纵截距相等的直线方程
51.已知集合求x,y的值
52.已知函数(1)求函数f(x)的最小正周期及最值(2)令判断函数g(x)的奇偶性,并说明理由
五、解答题(10题)53.如图,AB是⊙O的直径,P是⊙O所在平面外一点,PA垂直于⊙O所在的平面,且PA=AB=10,设点C为⊙O上异于A,B的任意一点.(1)求证:BC⊥平面PAC;(2)若AC=6,求三棱锥C-PAB的体积.
54.已知函数f(x)=x3-3x2-9x+1.(1)求函数f(x)的单调区间.(2)若f(x)-2a+1≥0对Vx∈[-2,4]恒成立,求实数a的取值范围.
55.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
56.如图,在四棱锥P-ABCD中,PC丄平面ABCD,AB//DC,DC丄AC.(1)求证:DC丄平面PAC;(2)求证:平面PAB丄平面PAC.
57.
58.
59.在直角梯形ABCD中,AB//DC,AB丄BC,且AB=4,BC=CD=2.点M为线段AB上的一动点,过点M作直线a丄AB.令AM=x,记梯形位于直线a左侧部分的面积S=f(x).(1)求函数f(x)的解析式;(2)作出函数f(x)的图象.
60.已知函数f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.
61.
62.已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为F1和F2,且|F1F2|=2,点(1,3/2)在该椭圆上.(1)求椭圆C的方程;(2)过F1的直线L与椭圆C相交于A,B两点,以F2为圆心为半径的圆与直线L相切,求△AF2B的面积.
六、单选题(0题)63.
参考答案
1.A分层抽样方法.采用分层抽样的方法,乙类产品抽取的件数是60×4/3+4+5=20.
2.C函数的奇偶性,单调性.根据题意逐-验证,可知y=-x2+1是偶函数且在(0,+∞)上为减函数.
3.B
4.D导数在研究函数中的应用∵f(x)=x3-12x,f’(x)=3x2-12,令f(x)=0,则x1=-2,x2=2.当x∈(-∞,-2),(2,+∞)时,f(x)>0,则f(x)单调递增;当x∈(―2,2)时,f(x)<0,则f(x)单调递减,∴f(x)的极小值点为a=2.
5.D
6.B诱导公式的运用.cos240°=cos(60°+180°)=-cos60°=-1/2
7.C解三角形的正弦定理的运
8.A由于直线与2x-3y+5=0垂直,因此可以设直线方程为3x+2y+k=0,又直线L过点(-1,2),代入直线方程得3*(-1)+2*2+k=0,因此k=-1,所以直线方程为3x+2y-1=0。
9.B
10.D向量的运算.因为四边形ABCD是平行四边形,
11.D椭圆的定义.由a2=b2+c2,c2=4-2=2,所以c=,椭圆焦距长度为2c=2
12.D
13.A
14.D因为α为第二象限角,所以sinα大于0,tanα小于0,所以P在第四象限。
15.A
16.D
17.D
18.A集合补集的计算.C∪M={2,4,6}.
19.B
20.B
21.A三角函数图像的性质.由题图可知,T=2[π/3-(-π/6)]=π,所以ω=2,由五点作图法可知2×π/3+α=π/2,所以α=-π/6所以函数的解析式为y=2sin(2x-π/6)
22.A命题的条件.若x=-1则x2=1,若x2=1则x=±1,
23.11/12流程图的运算.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=1/2+1/4+1/6的值,由于1/2+1/4+1/6=11/12故答案为:11/12
24.
,
25.41π,由题可知,底面边长为4,底面对角线为,外接球的直径即由高和底面对角线组成的矩形的对角线,所以外接球的直径为,外接球的表面积为。
26.①③④
27.1/2数列的性质.a2=1/1-a1=2,所以a1=1/2
28.0.5由于两个事件是对立事件,因此两者的概率之和为1,又两个事件的概率相等,因此概率均为0.5.
29.(3,-4)
30.45°,由题可知,因此B=45°。
31.
,AB为A和B的合集,因此有x2=3或x2=x且x不等于1,所以x=
32.12.等差数列的性质.根据等差数列的性质有2a8=a4+a12,a12=2a8-a4=12.
33.
34.
35.
36.
37.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
38.
39.
40.
41.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
42.
43.
44.证明:任取且x1<x2∴即∴在是增函数
45.点M是线段PB的中点又∵OM丄AB,∴PA丄AB则c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此椭圆的标准方程为
46.
47.x-7y+19=0或7x+y-17=0
48.(1)∵
∴又∵等差数列∴∴(2)
49.
50.设所求直线方程为y=kx+b由题意可知-3=2k+b,b=解得,时,b=0或k=-1时,b=-1∴所求直线为
51.
52.(1)(2)∴又∴函数是偶函数
53.(1)∵PA垂直于⊙O所在的平面,BC包含于⊙O所在的平面,∴PA⊥BC,又∵AB为⊙O的直径,C为⊙O上异于A、B的-点,AC⊥BC,且PA∩AC=A,∴BC⊥平面PAC.(2)由(1)知△ABC为直角三角形且∠ACB=90°,又AC=6,AB=10,∴又∵PA=10,PA⊥AC,∴S△PAC=1/2PA.AC=1/2×10×6=30.∴VC-PAB=1/3×SPAC×BC=1/3×30×
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年特种氯乙烯共聚物项目提案报告
- 工会劳务合同范本
- 小作坊与批发商合同范本
- 理财中介合同范本
- 借贷咨询合同范本
- 肾内科个人工作计划
- 路桥工程采购合同范本
- 2024年氨氮自动在线监测仪项目合作计划书
- 宁夏中卫市(2024年-2025年小学五年级语文)统编版阶段练习(上学期)试卷及答案
- 中纤板购销合同范本
- 供水运营管理实施方案(4篇)
- 水土保持工程质量评定表
- 美术 莫奈课件
- 水电站基本构造原理与类型ppt版(共67)
- 秦朝统一PPT课件教学
- 译林版(三起)五年级上册英语课件:Unit6 My e-friend Cartoon time(共24张PPT)
- 《民族团结》- 完整版课件
- 医院 交班站位图
- 第七章 森林植被恢复与重建理论
- 二年级上册美术课件-第14课 茂密的花 ▏人美版 (共30张PPT)
- 我的家乡-东营课件
评论
0/150
提交评论