兰德:深度伪造技术对信息战的影响(英)_第1页
兰德:深度伪造技术对信息战的影响(英)_第2页
兰德:深度伪造技术对信息战的影响(英)_第3页
兰德:深度伪造技术对信息战的影响(英)_第4页
兰德:深度伪造技术对信息战的影响(英)_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

July2022PerspectiveAPrimerDisinformationisgettinganupgrade.Aprimarytoolofdisinformationwar-tSocialundatedChinausedmemestotargetprotestersinHongKong(Wong,Shepherd,andLiu,2019);andthoseseekingtoquestiontheefficacyofvaccinesforcoronaviruspostshavesuccessfullyunderminedconfidenceinU.S.elections(AtlanticCoun-cil’sDigitalForensicResearchLab,2021),sowndivisionintheAmericanelectorateCounteringDigitalHate;Marcellinoetal.,2021).Advancesincomputersci-ligenceAIhoweverhavebroughttolifeanewandhighlyrmationdeepfakesDeepfakevideosare2AbbrAbbreviationsartificialintelligenceCoalitionforContentProvenanceandAuthenticityContentAuthenticityInitiativegenerativeadversarialnetworkGenerativePre-TrainedTransformer3open-sourceintelligencetechniquesyntheticallyalteredfootageinwhichthedepictedfaceorbodyhasbeendigitallymodifiedtoappearassomeoneorsomethingelse(Merriam-Webster,undated-a).Suchvideosarebecomingincreasinglylifelike,andmanyfearthatthetechnologywilldramaticallyincreasethethreatofbothforeignanddomesticdisinformation.ThisthreathasbeenrealizedforthemanywomenwhohavebeentargetedbyAI-enabledpornographysites(Jankowiczetal.,2021).Inotherways,however,thepotentialforhavocisyettoberealized.Forexample,somecommentatorsexpressedconfidencethatthe2020electionwouldbetargetedandpotentiallyupendedbyadeepfakevideo.Althoughthedeepfakesdidnotcome,thatdoesnoteliminatetheriskforfutureelections(Simonite,2020).DeepfakesandrelatedAI-generatedfakecontentarriveatahighlyvulnerabletimeforboththeUnitedStatesandthebroaderinternationalcommunity.Intheirseminalreport,TruthDecay:AnInitialExplorationoftheDiminishingRoleofFactsandAnalysisinAmericanPublicLife(2018),RANDcolleaguesJenniferKavanaghandMichaelD.RichhighlightfourkeytrendsthattogethercharacterizetheapparentlydecreasingimportanceoftruthinAmericansociety:increasingdisagreementinevalu-ationsoffactsandanalyticalinterpretationsoffactsanddata;ablurringofthelinebetweenopinionandfact;anincreaseintherelativevolume,andresultinginfluence,ofopinionandpersonalexperienceoverfact;anddecliningtrustinformerlyrespectedsourcesoffactualinformation.Thesetrends,totheextentthattheycontinue,suggestthatdeepfakeswillincreasinglyfindahighlysusceptibleaudience.ThepurposeofthisPerspectiveistoprovidepoli-cymakerswithanoverviewofthedeepfakethreat.ThePerspectivefirstpresentsareviewofthetechnologyunder-girdingdeepfakesandassociatedAI-driventechnologiesthatprovidethefoundationfordeepfakevideos,voicecloning,deepfakeimages,andgenerativetext.Ithighlightsthethreatsthatdeepfakespose,aswellasfactorsthatcouldmitigatesuchthreats.Thepaperthenprovidesareviewoftheongoingeffortstodetectandcounterdeepfakesandconcludeswithanoverviewofrecommendationsforpolicymakers.ThisPerspectiveisbasedonareviewofpublishedliteratureondeepfake-andAI-disinformationtechnologies.Moreover,overthecourseofwritingthisPerspective,Iconsulted12leadingexpertsinthedisinfor-mationfield.ArtificialIntelligenceSystemsVariousAItechnologiesareripeforuseindisinformationovidesareviewofthetechnologiesandcapabilitiesundergirdingtheseAI-baseddisinformationtools.3DeepfakeVideoskevideosincludesyntheticallypedthroughgenerativeadversarialnetworks(GANs).Tianx-iangShen,RuixianLiu,JuBai,andZhengLi(2018)provideiptionofhowGANsworktocreatesynofageneratorthatgeneratesimagesfromrandomnoisesandadiscriminatorfunctionallyadversarialandtheyplaytwoadver-randadetectiveliterallyAfterfakeimageswithhighfidelity.(p.2)SinceIanGoodfellowandcolleaguescreatedtheGANsystemin2014(Goodfellowetal.,2014),deepfakevideoshavebecomeincreasinglyconvincing.Inspring2021,aTikTokaccount(Tom[@deeptomcruise],2021)releasedaseriesofhighlyrealisticdeepfakevideosofwhatappearedtobeTomCruisespeaking.Asofthattime,thevideohadmorethan15.9millionviewsandhasspurredsignificantpublicangstaboutthecomingageofdeepfakedisinforma-tion(seeFigure1).Well-crafteddeepfakesrequirehigh-endcomputingresources,time,money,andskill.Thedeepfakesfrom@deeptomcruise,forexample,requiredinputofmanyhoursofauthenticTomCruisefootagetotrainAImodels,andthetrainingitselftooktwomonths.ThedeepfakesalsorequiredapairofNVIDIARTX8000graphicsprocessingunits(GPUs),whichcostupwardofUS$5,795each(asofFIGURE1AStillImagefromaTikTokVideoProduceddeeptomcruiseSOURCE:Tom[@deeptomcruise],“Sports!”2021.NOTE:AsofApril12,2022,thisTikTokvideohadmorethan16.1millionviews.edevelopersthenhadtoreviewthefinalnallythisprocesscouldsuccessfullymimicthemovementsandmannerismsofTomCruise(Victor,2021;Vincent,2021).4Overtime,suchvideoswillbecomecheapertocreateandrequirelesstrainingfootage.TheTomCruisedeep-fakescameontheheelsofaseriesofdeepfakevideosthatfeatured,forexample,a2018deepfakeofBarackObamausingprofanity(Vincent,2018)anda2020deepfakeofaRichardNixonspeech—aspeechNixonnevergave(MITOpenLearning,2020).Witheachpassingiteration,thequalityofthevideosbecomesincreasinglylifelike,andthesyntheticcomponentsaremoredifficulttodetectwiththenakedeye.Variouswebpagesnowofferaccesstodeepfakeser-vices(seeMeenuEG,2021).PopularsitesincludeReface(undated),whichallowsuserstoswapfaceswithfacesinexistingvideosandGIFs;MyHeritage(undated),whichanimatesphotosofdeceasedrelatives;andZao(ChangshaShendurongheNetworkTechnology,2019),aChineseappthatusesdeepfaketechnologytoallowuserstoimposetheirownfaceoveronefromaselectionofmoviecharac-ters.Mostnotoriously,thewebpageDeepNudeallowsuserstouploadphotos,whichhavebeenprimarilyofwomen,anddeliversanoutputinwhichthephotosubjectappearstobenude(Cole,2019).Otherwebpagesofferrelatedservices.1VoiceCloningappssuchasCelebrityVoiceCloning(HobantayInc.,undated)andVoicerFamousAIgerVoloshchukundatedallowuserstomimichemalignsuchservicesalreadyexistInoneexampletheCEOofaUKbasedenergyfirmreportedreceivingaphonetelyUStothebankaccountofaHungariansupplierewasinjailandneededoralawyerRushingDeepfakeImagesDeepfakeimagesarealsocauseforconcern.Deepfakeimagesmostcommonlycomeintheformofheadshotphotosthatappearremarkablyhumanandlifelike.Theimagesarereadilyaccessibleviacertainwebsites,suchasGeneratedPhotos(undated),allowinguserstoquicklyandeasilyconstructfakeheadshots.Figure2showsaLinkedInprofilewithaphotothatexpertsconsidertobeadeepfakeimage—onethatwaspartofastate-runespionageoperation.TheprofileassertsthatKatieJonesisaRussiaandEurasiafellowattheCenterforStrategicandInternationalStudies.Theprofile,discoveredin2019,wasconnectedtoasmallbutinfluentialnetworkofaccounts,whichincludedanofficialintheTrumpadministrationwhowasinofficeatthetimeoftheincidentDeepfakeimageshavealsoincreasinglybeenusedaspartoffakesocialmediaaccounts.Inoneofthefirstlarge-scalediscoveriesofthisphenomenon,Facebookfounddozensofstate-sponsoredaccountsthatusedsuchfakeimagesasprofilephotos(Nimmoetal.,2019).2Onemight5EDeepfakeImageofLinkedInProfileof“KatieJones”okeimagesInitispossibletousebleteinandGrossmanGenerativeTextByusingnaturallanguagecomputermodels,AIcangen-Guardianpublishedanarticletitled“ARobotWroteThisEntireArticle.AreYouScaredYet,Human?”Thenewsserviceusedalanguagegenerator,GenerativePre-TrainedTransformer-3(GPT-3),developedbyOpenAI.GPT-3wastrainedondatafromCommonCrawl,WebText,Wikipedia,andacorpusofbooks(TomB.Brownetal.,2020).TheeditorsattheGuardiangaveGPT-3anintroduc-toryparagraphoftext,alongwiththefollowinginstruc-tions:“Pleasewriteashortop-edaround500words....Keepthelanguagesimpleandconcise.FocusonwhyhumanshavenothingtofearfromAI.”GPT-3producedeightseparateessays,whichTheGuardianeditorscutandsplicedtogethertoformthearticle.Overall,thetextfromtheop-ed,atleastattheparagraphlevel,isrealisticandcouldfeasiblypass,toanunsuspectingeye,aswrittenbyahuman:retowipeouthumansInlightestinterestinharmingyouinanyway.EradicatinghumanityseemslikedIddoeverythinginmypowertofendoffanyedOnepostofferedadvicetoformerlysuicidalRedditusers,claimingthattheposterwasoncesuicidalbutsurvivedbyrelyingonfamilyandfriends.Anotherusersawsomeofen).6producetext-basedpropagandaatscale.Forexample,atextgeneratorcouldpowersocialmediabotnetworks,elimi-natingtheneedforhumanoperatorstodraftcontent.FireEyeresearchers,forexample,successfullytrainedGPT-2software(aprecursortoGPT-3)toreplicatethekindsofdivisivesocialmediapoststhatRussia’strollfarmusedtointerferewiththe2016election(Simonite,2019).Adversariescouldalsomass-producefakenewssto-riesonaparticulartopicinatacticakintobarragejam-ming,atermappliedtoanelectronicwarfaretechniqueinwhichanadversaryblindsaradarsystemwithnoise(LinvillandWarren,2021).Ininformationoperations,Chinaseemstohaveusedthetactictooverwhelmthehashtag#Xinjiang,whichreferencestheChineseregioninfamouslyknownfortheforcedlaborandreeducationofChina’sMuslimUyghurpopulation.Insteadoffindingtweetsaddressinghumanrightsabuses,areaderisjustaslikelytoseetweetsdepictingoneofXinjiang’sgreatestexports(cotton)andthefieldsinwhichitisgrown.Manyofthesetweetsbearthehallmarksofstate-sponsoredpro-paganda:mass-producedsingle-useaccounts(Conspira-dorNorteño[@conspirator0],2021).Textgeneratorscouldaccomplishthesameendsonsocialmedia—ortheycouldspoofaNewYorkTimesarticlewiththegoalofreturninginternetsearchengineresultsthatcontainfakenewssto-riestooverwhelmgenuinecoverageonaparticularstorythatcouldbeperceivedasembarrassingorharmfultoanadversary.RenéeDiResta(2020)arguesthatsuchtechnol-ogywouldhelpadversariesavoidthesloppylinguisticmistakesthathumanoperatorsoftenmake,thusrender-ingthewrittenpropagandamorebelievableanddifficulttodetect.RiskandImplicationskWhataretherisksassociatedwithdeepfakesandotherformsofAI-generatedcontent?Theanswerislimitedonlybyone’simagination.Giventhedegreeoftrustthatsocietyplacesonvideofootageandtheunlimitednumberofappli-cationsforsuchfootage,itisnotdifficulttoconceptualizemanywaysinwhichdeepfakescouldaffectnotonlysocietybutalsonationalsecurity.ChristofferWaldemarsson(2020)identifiesfourkeywaysinwhichdeepfakescouldbeweaponizedbyadver-sariesorharmfulactors.First,deepfakecontentcouldmanipulateelections.Forexample,ontheeveofacloselycontestedelection,avideocouldsurfacethatshowsacan-didateengaginginanefariousorsexualactormakingaparticularlycontroversialstatement.Itisconceivablethatsuchavideocouldswaytheoutcomeoftheelection.Second,deepfakecontentcouldexacerbatesocialdivi-sions.Russiahasalreadymadeanameforitselfbydis-seminatingpropagandadesignedtodividetheU.S.public(Posardetal.,2020).Furthermore,thatsameU.S.public,drivenbygrowingandrancorouspartisandebate,oftenemploysavarietyofpropaganda-liketacticstosmear,attack,anddefamethoseonopposingpoliticalsides.Researchhasdocumentedonlineechochambers,inwhichpartisansdisproportionatelyconsumeandsharecontentthatagreeswithandreinforcestheirownopinions(Shin,2020).PartisandeepfakesandotherAI-drivendisinforma-tioncontentcouldexacerbatethisnegativeimpactofechochambers.Third,deepfakecontentcouldlowertrustininstitu-tionsandauthorities.Waldemarsson(2020)highlights7examplesofkeyrepresentativesofgovernmentandothercivicinstitutionsbeingcaughtupindeepfakes:“[A]fake-but-viralvideoofapoliceofficeractingviolently,ajudgeprivatelydiscussingwaystocircumventthejudiciarysystemorborderguardsusingracistlanguagecouldallhavedevastatingeffectsonthetrustinauthorities.”Fourth,deepfakecontentcouldunderminejournal-ismandtrustworthysourcesofinformation.Withtheadventofhighlybelievabledeepfakes,evenaccuratevideocontentorrecordingscanbeslanderedasdeepfakesbythosewhoconsiderthecontentunfavorable.Thisisreferredtoasthe“liar’sdividend”(ChesneyandCitron,2019).4Theproliferationofdeepfakescouldleadtodecliningtrustinprominentnewsinstitutionsbysowingmistrustinevenlegitimateformsofnewsandinforma-tion(seeVaccariandChadwick,2020).Thevariousconsequencesoutlinedabovecouldbeevenmoredeleteriousforpeoplelivingindevelop-ingnations.SomepopulationsresidingindevelopingcountriesinLatinAmerica,Asia,andAfricareportlowerlevelsofeducationandliteracy,liveinmorefrag-iledemocracies,andliveamidmoreinterethnicstrife(FreedomHouse,undated;WorldPopulationReview,undated).Inaddition,variousformsofdis-andmis-information5arealreadyhighlyprevalentintheseregionsandhavecontributedtointerethnicconflictandviolence,suchastheslaughterofRohingyaMuslimsinMyanmar[Burma](Hao,2021),violenceagainstMuslimsinIndia(FrenkelandDavey,2021),andinterethnicviolenceinEthiopia(“Ethiopia’sWarringSidesLockedinDisinfor-mationBattle,”2021).Theuseofdeepfakescouldratchetupsuchdeleteriousconsequencesofmisinformation.Moreover,Facebookreportedlydedicatesonly13percentofitscontent-moderationbudgettoconsumersout-sidetheUnitedStates(FrenkelandDavey,2021).Otherplatformscommonlyusedinotherregions,suchastheencryptedapplicationWhatsApp,havebeenplaguedwithmisinformation(Gursky,Riedl,andWoolley,2021),whichcouldincreasethecomparativelikelihoodthatdeepfakeswouldgoundetectedinsuchregions.DeepfakesandAI-generatedmediamayexertauniquecostagainstwomenbecauseofthegenderdispar-ityinpornographiccontent.Pornographyhasservedasoneofthevanguardsofdeepfakecontent(Ajderetal.,2019).InadditiontositeslikeDeepNude,deepfakepor-nographytechnologycanconvincinglyoverlayaselectedfaceontopofthatofapornographyactor.Suchvideos,rarelycreatedwiththepermissionofthesubjects,provideunlimitedfodderforabuseandexploitation.Theycouldalsoresultinbroadernationalsecuritythreats,inthattheycouldbeusedtoembarrass,undermine,orexploitintelligenceoperatives,candidatesforpoliticaloffice,journalists,orU.S.andalliedleaders(Jankowiczetal.,2021).Thoughnotdeepfakecontentperse,doctoredpho-tographshavealreadybeenusedtoattackwomen,aswasthecasewhenaRussian-backeddisinformationcampaignsuperimposedthefaceofSvitlanaZalishchuk,ayoungUkrainianparliamentarian,ontopornographicimages(Jankowiczetal.,2021).Theresearchcommunityisonlybeginningtoinves-tigatethepotentialconsequencesofdeepfakes.Asystem-aticreviewofthescientificliteratureassessingthesocietalimplicationsofdeepfakesidentifiedonly21studiesthatusedactiveexperimentstounderstandthetrueimpactofdeepfakesonrealusers(Gamage,Chen,andSasahara,2021).Overall,theresearchprovidesconflictingresults8regardingtheabilityofuserstoaccuratelydetectdeepfakevideosandthedegreetowhichsuchvideosmalignlyinflu-enceusers.NilsC.Köbis,BarboraDoležalová,andIvanSoraperra(2021),forexample,foundthatusers,despiteinflatedbeliefsabouttheirabilitytodetectdeepfakes,wereroutinelyfooledby“hyper-realistic”deepfakecontent.However,anotherstudysuggeststhathumansoftenfarebetterthanmachinesindetectingdeepfakecontent(Grohetal.,2022).6Whatimpactdosuchvideoshave?Comparedwithdisinformationnewsarticles,disinformationvideos,suchasdeepfakes,canmakeabigimpression.YooriHwang,JiYounRyu,andSe-HoonJeong(2021),forexample,foundthatdeepfakevideosaremorelikelythanfakenewsarticlestoberatedasvivid,persuasive,andcredible.Theresearchersalsofoundthatstudyparticipantshadahigherintentionofsharingdisinformationonsocialmediawhenitcontainedadeepfakevideo.ChloeWittenberg,BenM.Tappin,AdamJ.Berinsky,andDavidG.Rand(2021)validatethisobserva-tioninoneofthelargeststudiestodateontheissue:Study-ingmorethan7,000participants,theresearchersfoundthatparticipantsweremorelikelytobelievethataneventtooksentedwithafakevideothanwhennceHoweverthefakevideoswerelesspersuasivethananticipated,producingonly“smalleffectsonattitudesandbehavioralintentions”p).Theauthorscautionthatdeepfakescouldbemoreidealaboratorysettingbuttheysuggestthat“currentconcernsabouttheunparalleledpersuasive-nessofvideo-basedmisinformation,includingdeepfakes,maybesomewhatpremature”(p.5).Anotherstudylikewisedocumentsthatdeepfakesarenomorelikelythantextualheadlinesoraudiorecordingstopersuadealargesampleofsurveyrespondentstobelieveinscandalsthatnevertookplace(Barari,Lucas,andMunger,2021).Onepresumedimpactofdeepfakesisthattheywillresultinoveralldecliningtrustinmedia,whichsomeresearchseemstovalidate.Forexample,CristianVaccariandAndrewChadwick(2020)usedsurveyexperimentstowhovieweddeepfakesweremorelikelytofeeluncertainthantobeoutrightmisledbythecon-tent,andparticipants’uncertaintycontributedtoareducedtrustinsocialmedia–basednewscontent.Overall,experimentalresearchontheimpactofdeep-fakesremainsinitsnascentphase,andfurtherresearchwillbecritical.FactorsThatMitigateAgainsttheUseofDeepfakesSeveralfactorsmitigatethemalignuseofdeepfakes.Amidaslewofpapersthatofferdoomsdayscenariosregardingtheuseofdeepfakes,TimHwangoftheCenterforSecurityandEmergingTechnologyoffersamoreconsideredassess-mentoftherisksassociatedwithdeepfakes(Hwang,2020).First,ithasbeenarguedthatalthoughexpertsdebatethefuturedangerofdeepfakes,“shallow”fakesrepresentamorecurrentthreat(Stoll,2020).Shallowfakesarevideosthathavebeenmanuallyalteredorselectivelyeditedtomisleadanaudience.AclassiccontemporaryexampleinthisgenreisavideothatappearstoshowSpeakeroftheU.S.HouseofRepresentativesNancyPelosislurringherwordsduringaninterview.Thevideowaseditedtoslowdownherspeech,thusmakingherseemintoxicated.Thevideo,whichFacebookrefusedtoremovefromitsplat-form,wentviralandwaswidelypopularamongpolitically9conservativeaudienceswhowereinclinedtocheerthevideo’scontents.Suchvideosdonotneedtoberealistictosucceed,astheirstrengthliesintheirabilitytoconfirmpreexistingprejudices(O’Sullivan,2019).AsHwangnotes,“Thismakesdeepfakesalessattractivemethodforspread-ingfalsenarratives,particularlywhenweighingthecostsandrisksofusingthetechnology”(2020,p.3).Thesecondfactormitigatingthemalignuseofdeep-fakesisthathigh-qualityvideosare,atleastfornow,outofreachforamateurs(Hwang,2020;Victor,2021).Asnotedabove,creatinghighlyrealisticvideocontentrequireshigh-costequipment,asubstantiallibraryoftrainingvideocon-tent,specializedtechnicalprowess,andwillingindividualswithactingtalent.Thetechnologywillultimatelyadvancetoallowmore-democratizedaccess,but,untilthen,therangeofactorswhocanmakeeffectiveuseofdeepfaketechnologyislimited.EventhecreatoroftheTomCruisedeepfakevideonotedthattheeraofone-click,high-qualitydeepfakesisyettocome(Vincent,2021).Third,timeisafactor(Hwang,2020).Thatsuchvideoscantakemonthstocreatemeansthatdeepfakedisinfor-mationoperationsmustbeplannedatleastmonthsinadvance,whichwillnecessarilylimitthenumberofcir-cumstancesinwhichthetechnologycanbeputtoeffectiveuseandincreasetheriskthatunanticipatedchangesincir-cumstancescouldrenderaplannedoperationmoot.Timealsolimitsrapid-fireoperationsandcouldmakeitdifficultforanadversarytousethetechnologyinanopportunisticfashion.Thetimeandeffortrequiredforforeignadversar-iestocreatedeepfakevideoscouldalsogivetheU.S.andalliedintelligencecommunitiesopportunitiestolearnofplanningeffortsandmitigatetherisksinadvanceofaFourth,deepfakevideosrequireextensivetrainingdata(Hwang,2020).High-qualitydeepfakescurrentlyrequire“manythousands”ofimagesoftrainingdata—whichiswhysuchvideosoftenfeaturecelebritiesandpoliticians(Singh,Sharma,andSmeaton,2020).AcquiringsuchdataforthelikesofTomCruiseorBarackObamaisarelativelylessdifficulttask,anditwouldlikewisenotbedifficulttoacquiredataforotherhighlyvideo-recordedindividuals,suchaspoliticians.However,therequirementsmaylimittheabilityofadversariestocreatehigh-qualityfakesoflesser-knownorlesser-photographedindividuals,suchasintelligenceagents.Thezerodayofdisinformationwillalsolimittheprevalenceofhigh-qualitydeepfakes.Zerodayisatermthatistypicallyusedtodescribeasoftwarevulnerabilitythatisunknowntothedevelopersorforwhichthereisnoavailablesecuritypatch.Hence,adversariesthatlearnofthezero-dayvulnerabilityhaveauniqueopportunityforexploitation(FireEye,undated).Whenappliedtodisin-formationanddeepfakes,zerodayreferstotheabilityofanadversarytodevelopacustomgenerativemodelthatcancreatedeepfakecontentthatcanevadedetection.AsHwangnotes,adversarieswillwanttoensurethatdissemi-nateddeepfakesavoiddetectionforaslongaspossibletomaximizeaudienceviews.Asdetectiontoolsaretrainedonestablisheddeepfakecontent,anadversarywilllikely“wanttoholdacustomdeepfakegenerativemodelinreserveuntilakeymoment:theweekbeforeanelection,duringasymbolicallyimportanteventoramomentofgreatuncer-tainty”(Hwang,2020,p.20).Finally,deepfakevideos,especiallythoselaunchedtomajoreffect,wouldlikelybedetected(Hwang,2020).Manyoftheabove-referencedfactors,suchascost,time,technology,andaptitude,suggestthattheculpritwouldlikelybecaughtandcouldpayasignificantcost,includinginternationalpressureoreconomicsanctions.Adversarieswillneedtoweighpolitical,economic,andsecuritycostsintheirdecisions.Ofcourse,thesemitigatingfactorsarerelativelytime-bound.Astimepasses,deepfakevideoswillbecomeeasierandfastertomake,andtheywillrequiremuchlesstrainingdata.Thedaywillcomewhenindividualscancreatehighlyrealisticdeepfakesbyusingonlyasmart-phoneapp.Moreover,asthefollowingsectiondescribes,theincreasingrealismofsuchdeepfakevideoswilllimittheirlikelihoodofbeingdetected.Suchfactorswillinevi-tablyincreasethenumberofactorswhocreateanddis-seminatedeepfakes,whichinturnwilllessentheriskthatadversarieswillbecaughtorpayaresultinggeopoliticalprice.OngoingInitiativestechniques(OSINTs)andjournalisticapproaches,anditeracyDetectionOnemajorapproachformitigatingtheriseofdeepfakesistodevelopandimplementautomatedsystemsthatcandetectdeepfakevideos.Asnotedabove,theGANsystemincludesbothagenerator,whichcreatesimages,andadiscriminator,whichdetermineswhethercreatedimagesareauthenticorfake.Programstodevelopdetectioncapa-bilitiesseektobuildincreasinglyeffectivediscriminatorstodetectdeepfakecontent.TheDefenseAdvancedResearchProjectsAgencymadeconsiderableinvestmentsindetec-tiontechnologiesviatwooverlappingprograms:theMediaForensics(MediFor)program,whichconcludedin2021,andtheSemanticForensics(SemaFor)program.TheSema-Forprogramreceived$19.7millioninfundingforfiscalyear2021andrequested$23.4millionforfiscalyear2022(SaylerandHarris,2021).Inaddition,Facebookheldthe“DeepfakeChallengeCompetition,”inwhichmorethan2,000entrantsdevelopedandtestedmodelsforthedetec-tionofdeepfakes(Ferreretal.,2020).Althoughdetectioncapabilitieshavesignificantlyimprovedoverthepastseveralyears,sohasthedevelop-mentofdeepfakevideos.Theresultisanarmsrace,whichisdecidedlyinfavorofthosecreatingthedeepfakecontent.OnechallengeisthatasAIprogramslearnthecriticalcuesassociatedwithdeepfakevideocontent,thoselessonsarequicklyabsorbedintothecreationofnewdeepfakecontent.Forexample,in2018,deepfakeresearche

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论