




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在△ABC中,AB=2.2,BC=3.6,∠B=60°,将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在BC边上时,则CD的长为()A.1.5 B.1.4 C.1.3 D.1.22.下列一元二次方程中有两个不相等的实数根的方程是()A. B.C. D.3.如果小强将飞镖随意投中如图所示的正方形木板,那么P(飞镖落在阴影部分的概率)为()A. B. C. D.4.(湖南省娄底市九年级中考一模数学试卷)将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96B.69C.66D.995.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是(
).A. B. C. D.6.顺次连接平行四边形四边的中点所得的四边形是()A.矩形 B.菱形 C.正方形 D.平行四边形7.一元二次方程x(x﹣1)=0的解是()A.x=0 B.x=1 C.x=0或x=﹣1 D.x=0或x=18.已知关于x的方程ax2+bx+c=0(a≠0),则下列判断中不正确的是()A.若方程有一根为1,则a+b+c=0B.若a,c异号,则方程必有解C.若b=0,则方程两根互为相反数D.若c=0,则方程有一根为09.用配方法解一元二次方程x2﹣2x=5的过程中,配方正确的是()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=910.已知正多边形的一个内角是135°,则这个正多边形的边数是()A.3 B.4 C.6 D.8二、填空题(每小题3分,共24分)11.将一些相同的圆点按如图所示的规律摆放:第1个图形有3个圆点,第2个形有7个圆点,第3个图形有13个圆点,第4个图形有21个圆点,则第20个图形有_____个圆点.12.某游乐园的摩天轮(如图1)有均匀分布在圆形转轮边缘的若干个座舱,人们坐在座舱中可以俯瞰美景,图2是摩天轮的示意图.摩天轮以固定的速度绕中心顺时针方向转动,转一圈为分钟.从小刚由登舱点进入摩天轮开始计时,到第12分钟时,他乘坐的座舱到达图2中的点_________处(填,,或),此点距地面的高度为_______m.13.已知点A(4,3),AB∥y轴,且AB=3,则B点的坐标为_____.14.为了估计虾塘里海虾的数目,第一次捕捞了500只虾,将这些虾一一做上标记后放回虾塘.几天后,第二次捕捞了2000只虾,发现其中有20只虾身上有标记,则可估计该虾塘里约有_____只虾.15.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是_____.16.边心距是的正六边形的面积为___________.17.若方程的解为,则的值为_____________.18.如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC宽为2m,坝高为6m,则坝底AB的长为_____m.三、解答题(共66分)19.(10分)如图,已知矩形的边,,点、分别是、边上的动点.(1)连接、,以为直径的交于点.①若点恰好是的中点,则与的数量关系是______;②若,求的长;(2)已知,,是以为弦的圆.①若圆心恰好在边的延长线上,求的半径:②若与矩形的一边相切,求的半径.20.(6分)在平面直角坐标系中,的顶点分别为、、.(1)将绕点顺时针旋转得到,画图并写出点的坐标.(2)作出关于中心对称图形.21.(6分)如图,△ABC中(1)请你利用无刻度的直尺和圆规在平面内画出满足PB2+PC2=BC2的所有点P构成的图形,并在所作图形上用尺规确定到边AC、BC距离相等的点P.(作图必须保留作图痕迹)(2)在(1)的条件下,连接BP,若BC=15,AC=14,AB=13,求BP的长.22.(8分)如图,已知一次函数y=kx+b的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=交于点C,D.作CE⊥x轴,垂足为E,CF⊥y轴,垂足为F.点B为OF的中点,四边形OECF的面积为16,点D的坐标为(4,﹣b).(1)求一次函数表达式和反比例函数表达式;(2)求出点C坐标,并根据图象直接写出不等式kx+b≤的解集.23.(8分)如图,已知二次函数G1:y=ax2+bx+c(a≠0)的图象过点(﹣1,0)和(0,3),对称轴为直线x=1.(1)求二次函数G1的解析式;(2)当﹣1<x<2时,求函数G1中y的取值范围;(3)将G1先向右平移3个单位,再向下平移2个单位,得到新二次函数G2,则函数G2的解析式是.(4)当直线y=n与G1、G2的图象共有4个公共点时,直接写出n的取值范围.24.(8分)如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB=13,BC=1.(1)求BF的长;(2)求⊙O的半径r.25.(10分)为积极响应新旧动能转换.提高公司经济效益.某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价(单位:万元)成一次函数关系.(1)求年销售量与销售单价的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润.则该设备的销售单价应是多少万元?26.(10分)在中,,是边上的中线,点在射线上.猜想:如图①,点在边上,,与相交于点,过点作,交的延长线于点,则的值为.探究:如图②,点在的延长线上,与的延长线交于点,,求的值.应用:在探究的条件下,若,,则.
参考答案一、选择题(每小题3分,共30分)1、B【分析】运用旋转变换的性质得到AD=AB,进而得到△ABD为等边三角形,求出BD即可解决问题.【详解】解:如图,由题意得:AD=AB,且∠B=60°,∴△ABD为等边三角形,∴BD=AB=2,∴CD=3.6﹣2.2=1.1.故选:B.【点睛】该题主要考查了旋转变换的性质、等边三角形的判定等几何知识点及其应用问题;牢固掌握旋转变换的性质是解题的关键.2、B【分析】根据一元二次方程根的判别式,分别计算△的值,进行判断即可.【详解】A、△=0,方程有两个相等的实数根;B、△=4+76=80>0,方程有两个不相等的实数根;C、△=-16<0,方程没有实数根;D、△=1-4=-3<0,方程没有实数根.故选:B.3、C【解析】先求大正方形和阴影部分的面积分别为36和4,再用面积比求概率.【详解】设小正方形的边长为1,则正方形的面积为6×6=36,阴影部分面积为,所以,P落在三角形内的概率是.故选C.【点睛】本题考核知识点:几何概率.解答本题的关键是理解几何概率的概念,即:概率=相应的面积与总面积之比.分别求出相关图形面积,再求比.4、B【解析】现将数字“69”旋转180°,得到的数字是:69,故选B.5、D【分析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DE∥BC,可得△ADE∽△ABC,并可得:,,,故A,B,C正确;D错误;故选D.【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质.6、D【解析】试题分析:顺次连接四边形四边的中点所得的四边形是平行四边形,如果原四边形的对角线互相垂直,那么所得的四边形是矩形,如果原四边形的对角线相等,那么所得的四边形是菱形,如果原四边形的对角线相等且互相垂直,那么所得的四边形是正方形,因为平行四边形的对角线不一定相等或互相垂直,因此得平行四边形.故选D.考点:中点四边形的形状判断.7、D【解析】试题分析:方程利用两数相乘积为0,两因式中至少有一个为0,因此可由方程x(x﹣1)=0,可得x=0或x﹣1=0,解得:x=0或x=1.故选D.考点:解一元二次方程-因式分解法8、C【分析】将x=1代入方程即可判断A,利用根的判别式可判断B,将b=1代入方程,再用判别式判断C,将c=1代入方程,可判断D.【详解】A.若方程有一根为1,把x=1代入原方程,则,故A正确;B.若a、c异号,则△=,∴方程必有解,故B正确;C.若b=1,只有当△=时,方程两根互为相反数,故C错误;D.若c=1,则方程变为,必有一根为1.故选C.【点睛】本题考查一元二次方程的相关概念,熟练掌握一元二次方程的定义和解法是关键.9、B【分析】在方程左右两边同时加上一次项系数一半的平方即可.【详解】解:方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=5+1,即(x﹣1)2=6,故选:B.【点睛】本题考查了配方法,解题的关键是注意:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.10、D【分析】根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数=,∴这个正多边形的边数是1.故选:D.【点睛】本题考查了正多边形的内角和与外角和的知识,知道正多边形的外角之和为360°是解题关键.二、填空题(每小题3分,共24分)11、1【分析】观察图形可知,每个图形中圆点的个数为序号数的平方加上序号数+1,依此可求第n个图有多少个圆点.【详解】解:由图形可知,第1个图形有12+1+1=3个圆点;第2个图形有22+2+1=7个圆点;第3个图形有32+3+1=13个圆点;第4个图形有42+4+1=21个圆点;…则第n个图有(n2+n+1)个圆点;所以第20个图形有202+20+1=1个圆点.故答案为:1.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.12、C78【分析】根据转一圈需要18分钟,到第12分钟时转了圈,即可确定出座舱到达了哪个位置;再利用垂径定理和特殊角的锐角三角函数求点离地面的高度即可.【详解】∵转一圈需要18分钟,到第12分钟时转了圈∴乘坐的座舱到达图2中的点C处如图,连接BC,OC,OB,作OQ⊥BC于点E由图2可知圆的半径为44m,即∵OQ⊥BC∴∴∴∴点C距地面的高度为m故答案为C,78【点睛】本题主要考查解直角三角形,掌握垂径定理及特殊角的锐角三角函数是解题的关键.13、(4,6)或(4,0)【解析】试题分析:由AB∥y轴和点A的坐标可得点B的横坐标与点A的横坐标相同,根据AB的距离可得点B的纵坐标可能的情况试题解析:∵A(4,3),AB∥y轴,∴点B的横坐标为4,∵AB=3,∴点B的纵坐标为3+3=6或3-3=0,∴B点的坐标为(4,0)或(4,6).考点:点的坐标.14、1.【分析】设该虾塘里约有x只虾,根据题意列出方程,解之可得答案.【详解】解:设此鱼塘内约有鱼x条,根据题意,得:=,解得:x=1,经检验:x=1是原分式方程的解,∴该虾塘里约有1只虾,故答案为:1.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.15、k≤5且k≠1.【解析】试题解析:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1.考点:根的判别式.16、【分析】根据题意画出图形,先求出∠AOB的度数,证明△AOB是等边三角形,得出AB=OA,再根据直角三角形的性质求出OA的长,再根据S六边形=6S△AOB即可得出结论.【详解】解:∵图中是正六边形,∴∠AOB=60°.∵OA=OB,∴△OAB是等边三角形.∴OA=OB=AB,∵OD⊥AB,OD=,∴OA=∴AB=4,∴S△AOB=AB×OD=×2×=,∴正六边形的面积=6S△AOB=6×=6.故答案为:6.【点睛】本题考查的是正多边形和圆,熟知正六边形的性质并求出△AOB的面积是解答此题的关键.17、【分析】根据根与系数的关系可得出、,将其代入式中即可求出结果.【详解】解:∵方程的两根是,
∴、,
∴.
故答案为:.【点睛】本题主要考查了一元二次方程根与系数的关系,牢记如果一元二次方程有两根,那么两根之和等于、两根之积等于是解题的关键.18、(7+6)【解析】过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,得到两个直角三角形和一个矩形,在Rt△AEF中利用DF的长,求得线段AF的长;在Rt△BCE中利用CE的长求得线段BE的长,然后与AF、EF相加即可求得AB的长.【详解】解:如图所示:过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,
∵坝顶部宽为2m,坝高为6m,
∴DC=EF=2m,EC=DF=6m,
∵α=30°,
∴BE=(m),
∵背水坡的坡比为1.2:1,
∴,
解得:AF=5(m),
则AB=AF+EF+BE=5+2+6=(7+6)m,
故答案为(7+6)m.【点睛】本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解.三、解答题(共66分)19、(1)①;②1.5;(2)①5;②、,、5.【解析】(1)①根据直径所对的圆周角是直角判断△APQ为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ∽△QBA,由对应边成比例求解;(2)①画出图形,由勾股定理列方程求解;②分与矩形的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解.【详解】解:(1)①如图,PQ是直径,E在圆上,∴∠PEQ=90°,∴PE⊥AQ,∵AE=EQ,∴PA=PQ,∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP,∵∠QPB=2∠AQP.\②解:如图,∵BE=BQ=3,∴∠BEQ=∠BQE,∵∠BEQ=∠BPQ,∵∠PBQ=∠QBA,∴△PBQ∽△QBA,∴,∴,∴BP=1.5;(2)①如图,BP=3,BQ=1,设半径OP=r,在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴的半径是5.②如图,与矩形的一边相切有4种情况,如图1,当与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=,∴半径为.如图2,当与矩形ABCD边AD相切于点N,延长NO交BC于L,则OL⊥BC,过P作PS⊥NL于S,设OS=x,则ON=OP=OQ=3+x,设PS=BL=y,由勾股定理得,,解得(舍去),,∴ON=,∴半径为.如图3,当与矩形ABCD边CD相切于点M,延长MO交AB于R,则OR⊥AB,过O作OH⊥BC于H,设OH=BR=x,设HQ=y,则OM=OP=OQ=4-1-y=3-y,由勾股定理得,,解得(舍去),,∴OM=,∴半径为.如图4,当与矩形ABCD边AB相切于点P,过O作OG⊥BC于G,则四边形AFCG为矩形,设OF=CG=x,,则OP=OQ=x+4,由勾股定理得(x+4)2=32+(x+3)2,解得,x=1,∴OP=5,∴半径为5.综上所述,若与矩形的一边相切,为的半径,,,5.【点睛】本题考查圆的相关性质,涉及圆周角定理,垂径定理,切线的性质等,综合性较强,利用分类思想画出对应图形,化繁为简是解答此题的关键.20、(1)图见解析;;(2)见解析【分析】(1)根据网格结构找出点A、B、C绕点B顺时针旋转90°的对应点A1、、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点C1的坐标;
(2)根据网格结构找出点A、B、C关于点N对称的点A2、B2、C2的位置,然后顺次连接即可.【详解】解:(1)如图所示:即为所求,点;(2)如图所示:即为所求.【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.21、(1)见解析;(2)BP=【分析】(1)根据PB2+PC2=BC2得出P点所构成的圆以BC为直径,根据垂直平分线画法画出O点,补全⊙O,再作∠ACB的角平分线与⊙O的交点即是P点.(2)设⊙O与AC的交点为H,AH=x,得到AH、BH,根据题意求出OP∥AC,即可得出OP⊥BH,BQ=BH,OQ=CH,求出PQ,根据勾股定理求出BP.【详解】(1)如图:(2)由(1)作图,设⊙O与AC的交点为H,连接BH,∴∠BHC=90°∵BC=15,AC=14,AB=13设AH=x∴HC=14-x∴解得:x=5∴AH=5∴BH=12.连接OP,由(1)作图知CP平分∠BCA∴∠PCA=∠BCP又∵OP=OC∴∠OPC=∠BCP∴∠OPC=∠PCA∴OP∥CA∴OP⊥BH与点Q∴BQ=BH=6又BO=∴OQ=∴PQ=∴BP=.【点睛】此题主要考查了尺规作图中垂直平分线,角平分线及圆的画法和相似比及勾股定理等知识,解题的关键是构建直角三角形及找到关键相似三角形.22、(1)y=﹣2x+1;(2)﹣2≤x<0或x≥1.【分析】(1)由矩形的面积求得m=﹣16,得到反比例函数的解析式,把D(1,﹣b)代入求得的解析式得到D(1,﹣1),求得b=1,把D(1,﹣1)代入y=kx+1,即可求得一次函数的解析式;(2)由一次函数的解析式求得B的坐标为(0,1),根据题意OF=8,C点的纵坐标为8,代入反比例函数的解析式求得横坐标,得到C的坐标,根据C、D的坐标结合图象即可求得不等式kx+b≤的解集.【详解】解:(1)∵CE⊥x轴,CF⊥y轴,∵四边形OECF的面积为16,∴|m|=16,∵双曲线位于二、四象限,∴m=﹣16,∴反比例函数表达式为y=,将x=1代入y=得:y=﹣1,∴D(1,﹣1),∴b=1将D(1,﹣1)代入y=kx+1,得k=﹣2∴一次函数的表达式为y=﹣2x+1;(2)∵y=﹣2x+1,∴B(0,1),∴OF=8,将y=8代入y=﹣2x+1得x=﹣2,∴C(﹣2,8),∴不等式kx+b≤的解集为﹣2≤x<0或x≥1.【点睛】本题主要考查了反比例函数与一次函数的交点问题,用到的知识点是待定系数法求反比例函数与一次函数的解析式,这里体现了数形结合的思想,关键是根据反比例函数与一次函数的交点求出不等式的解集.23、(1)二次函数G1的解析式为y=﹣x2+2x+3;(2)0<y≤4;(3)y=﹣(x﹣4)2+2;(4)n的取值范围为<n<2或n<.【分析】(1)由待定系数法可得根据题意得解得,则G1的解析式为y=﹣x2+2x+3;(2)将解析式化为顶点式,即y=﹣(x﹣1)2+4,当x=﹣1时,y=0;x=2时,y=3;而抛物线的顶点坐标为(1,4),且开口向下,所以当﹣1<x<2时,0<y≤4;(3)G1先向右平移3个单位,再向下平移2个单位,得到新二次函数G2,则函数G2的解析式是y=﹣(x﹣1﹣3)2+4﹣2,即y=﹣(x﹣4)2+2,故答案为y=﹣(x﹣4)2+2;(4)解﹣(x﹣4)2+2═﹣(x﹣1)2+4得x=,代入y=﹣(x﹣1)2+4求得y=,由图象可知当直线y=n与G1、G2的图象共有4个公共点时,n的取值范围为<n<2或n<.【详解】解:(1)根据题意得解得,所以二次函数G1的解析式为y=﹣x2+2x+3;(2)因为y=﹣(x﹣1)2+4,所以抛物线的顶点坐标为(1,4);当x=﹣1时,y=0;x=2时,y=3;而抛物线的顶点坐标为(1,4),且开口向下,所以当﹣1<x<2时,0<y≤4;(3)G1先向右平移3个单位,再向下平移2个单位,得到新二次函数G2,则函数G2的解析式是y=﹣(x﹣1﹣3)2+4﹣2,即y=﹣(x﹣4)2+2,故答案为y=﹣(x﹣4)2+2.(4)解﹣(x﹣4)2+2═﹣(x﹣1)2+4得x=,代入y=﹣(x﹣1)2+4求得y=,由图象可知当直线y=n与G1、G2的图象共有4个公共点时,n的取值范围为<n<2或n<.【点睛】本题的考点是二次函数的综合应用.方法是根据题意及二次函数图像的性质解题.24、(1)BF=3;(2)r=2.【分析】(1)设BF=BD=x,利用切线长定理,构建方程解决问题即可.(2)证明四边形OECF是矩形,推出OE=CF即可解决问题.【详解】解:(1)在Rt△ABC中,∵∠C=90°,AB=13,BC=1,∴AC===5,∵⊙O为Rt△ABC的内切圆,切点分别为D,E,F,∴BD=BF,AD=AE,CF=CE,设BF=BD=x,则AD=AE=13﹣x,CFCE=1﹣x,∵AE+EC=5,∴13﹣x+1﹣x=5,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绿化维修及养护协议
- 2025年四川省绵阳市江油市八校中考物理一模试卷(含解析)
- 低碳材料采购合同示范
- 香港借款合同范本
- 菜籽油购销合同范本
- 个人短期借款合同协议
- 江苏省永丰初级中学2025年高三生物试题期末练习试卷含解析
- 云南省临沧市凤庆县重点名校2024-2025学年初三下学期4月考生物试题试卷含解析
- 山东理工职业学院《画法几何与CAD制图》2023-2024学年第二学期期末试卷
- 泰州职业技术学院《临床室管理》2023-2024学年第二学期期末试卷
- 建筑工程安全知识课件
- 钢材三方采购合同范本
- 贸易安全培训管理制度
- 全民营养周知识讲座课件
- 2025年郑州电力职业技术学院单招综合素质考试题库及答案1套
- 螺栓紧固标准规范
- 社区时政考试试题及答案
- MOOC 创业基础-暨南大学 中国大学慕课答案
- (完整word版)扣字词汇124
- 赛英公司FOD监测雷达系统
- 固体制剂车间主要过程控制点
评论
0/150
提交评论