版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学复习讲义图形的相似第一部分:知识点精准记忆1、比例线段的相关概念如果选用同一长度单位量得两条线段a,b的长度分别为m,n,那么就说这两条线段的比是,或写成a:b=m:n在两条线段的比a:b中,a叫做比的前项,b叫做比的后项。在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段若四条a,b,c,d满足或a:b=c:d,那么a,b,c,d叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项,线段的d叫做a,b,c的第四比例项。如果作为比例内项的是两条相同的线段,即或a:b=b:c,那么线段b叫做线段a,c的比例中项。2、比例的性质(1)基本性质①a:b=c:dad=bc②a:b=b:c(2)更比性质(交换比例的内项或外项)(交换内项)(交换外项)(同时交换内项和外项)(3)反比性质(交换比的前项、后项):(4)合比性质:(5)等比性质:3、黄金分割把线段AB分成两条线段AC,BC(AC>BC),并且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC=AB0.618AB4、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例。推论:(1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。平行于三角形一边且和其他两边相交的直线截得的三角形的三边与原三角形的三边对应成比例。5、相似多边形定义1:形状相同的图形叫做相似图形。定义2:两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形。相似多边形对应边的比叫做相似比。性质相似多边形的对应角相等,对应边成比例。6、相似三角形的判定定义:三个角分别相等,三条边成比例的两个三角形相似。定理:平行线分线段成比例定理两条直线被一组平行线所截,所得的对应线段成比例。推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。判定1:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。判定2:三边成比例的两个三角形相似。判定3:两边成比例且夹角相等的两个三角形相似。判定4:两角分别相等的两个三角形相似。7、相似三角形的性质相似三角形的对应角相等,对应边成比例;相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比;相似三角形对应线段的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方。相似三角形模型(1)、A字型【方法点拨】基本模型:A字型(平行)反A字型(不平行)(2)、X字型(8字型)【方法点拨】基本模型:X字型(平行)反X字型(不平行)(3)、母子型图1垂直母子型条件:,图1结论:;图2斜交母子字型条件:,图2结论:;(4)、旋转型(手拉手)基本模型:旋转放缩变换,图中必有两对相似三角形.(5)、K字型(一线三等角))基本模型:如图1,∠B=∠C=∠EDF推出△BDE∽△CFD(一线三等角)如图2,∠B=∠C=∠ADE推出△ABD∽△DCE(一线三等角)如图3,特别地,当D时BC中点时:△BDE∽△DFE∽△CFD推出ED平分∠BEF,FD平分∠EFC.(6)、作平行线解决此类问题的关键是作平行线去构造相似三角形从而利用相似三角形的性质去解决问题.基本模型:9、位似图形定义:如果两个图形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心。这时的相似比又叫位似比。性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比。由一个图形得到它的位似图形的变换叫做位似变换。利用位似变换可以把一个图形放大或缩小。画位似图形的步骤:1)确定位似中心,找原图形的关键点。2)确定位似比。3)以位似中心为端点向各关键点作射线。4)顺次连结各截取点,即可得到要求的新图形。10.平移、轴对称、旋转、位似的区别:平移:和原图形一模一样(和原图形全等且能与原图形重合)轴对称:面积和原图形一样也是全等,和平移的不同点就是轴对称之后的图形不能与原图形重合,虽然它们全等)旋转:面积和原图形一样,也是全等,和轴对称的不同点是轴对称只有一个和原图形轴对称的图形,而旋转可以旋转出无数个。位似:位似出的图形只和原图形的角相等边就不一定相等了。【总结】平移轴对称旋转位似原图形全等全等全等相似第二部分:考点典例剖析考点一:比例的性质【例1-1】(2020·黑龙江哈尔滨·中考真题)如图,在中,点D在BC上,连接AD,点E在AC上,过点E作,交AD于点F,过点E作,交BC于点G,则下列式子一定正确的是()A. B. C. D.【例1-2】(2021·四川巴中·中考真题)两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:如图,点P是线段AB上一点(AP>BP),若满足,则称点P是AB的黄金分割点.黄金分割在日常生活中处处可见,例如:主持人在舞台上主持节目时,站在黄金分割点上,观众看上去感觉最好.若舞台长20米,主持人从舞台一侧进入,设他至少走x米时恰好站在舞台的黄金分割点上,则x满足的方程是()A.(20﹣x)2=20x B.x2=20(20﹣x)C.x(20﹣x)=202 D.以上都不对【例1-3】(2022山西省模拟)宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH【例1-4】((2021·黑龙江牡丹江·中考真题)如图,矩形OABC的面积为36,它的对角线OB与双曲线y相交于点D,且OD:OB=2:3,则k的值为()A.12 B.﹣12 C.16 D.﹣16考点二:平行线分线段比例定理【例2-1】(2021·辽宁朝阳·中考真题)如图,在菱形ABCD中,点E,F分别在AB,CD上,且BE=2AE,DF=2CF,点G,H分别是AC的三等分点,则S四边形EHFG÷S菱形ABCD的值为()A. B. C. D.【例2-2】(2021·湖南中考真题)下图是一架梯子的示意图,其中,且.为使其更稳固,在,间加绑一条安全绳(线段),量得,则________.【例2-3】(2021·江苏如皋·二模)如图,在中,D在AC边上,,O是BD的中点,连接AO并延长交BC于E,记的面积为,四边形CDOE的面积为,则____________.考点三:相似多边形【例3-1】(2022·福建福州·一模)如图,将一张矩形纸片沿两长边中点所在的直线对折,如果得到的两个矩形都与原矩形相似,则原矩形长与宽的比是(
)A.2:1B.1:2C.3:2D.:1【例3-2】(2021·江苏鼓楼·二模)学完“探索三角形相似的条件”之后,小明所在的学习小组尝试探索四边形相似的条件,以下是他们的思考,请你和他们一起完成探究过程.【定义】四边成比例,且四角分别相等的两个四边形叫做相似四边形.【初步思考】(1)小明根据探索三角形相似的条件所获得的经验,考虑可以从定义出发逐步弱化条件探究四边形相似的条件.他考虑到“四角分别相等的两个四边形相似”可以举出反例“矩形”,“四边成比例的两个四边形相似”可以举出反例______.所以四边形相似的条件必须再添加条件,于是,可以从“四边成比例,且一角对应相等的两个四边形相似”,“三边成比例,且两角分别相等的两个四边形相似”,“两边成比例,且三角分别相等的两个四边形相似”来探究.【深入探究】(2)学习小组一致认为,“四边成比例,且一角对应相等的两个四边形相似”是真命题,请结合图形完成证明.已知:四边形和四边形中,,.求证:四边形四边形.证明:(3)对于“三边成比例,且两角分别相等的两个四边形相似”,学习小组得到如下的四个命题:①“三边成比例,两邻角分别相等且只有一角为其中两边的夹角的两个四边形相似”;②“三边成比例,两邻角分别相等且都不是其中两边的夹角的两个四边形相似”;③“三边成比例及其两夹角分别相等的两个四边形相似”;④“三边成比例,两对角分别相等的两个四边形相似”.其中真命题是______.(填写所有真命题的序号)(4)请你完成“两边成比例,且三角分别相等的两个四边形相似”的探究过程.考点四:相似三角形性质与判定【例4-1】(2021·湖南湘潭·中考真题)如图,在中,点D,E分别为边,上的点,试添加一个条件:_____,使得与相似.(任意写出一个满足条件的即可)【例4-2】(2021·上海中考真题)如图,在梯形中,是对角线的中点,联结并延长交边或边于E.(1)当点E在边上时,①求证:;②若,求的值;(2)若,求的长.(2021·山东济宁·中考真题)如图,已知.(1)以点A为圆心,以适当长为半径画弧,交于点M,交于点N.(2)分别以M,N为圆心,以大于的长为半径画弧,两弧在的内部相交于点P.(3)作射线交于点D.(4)分别以A,D为圆心,以大于的长为半径画弧,两弧相交于G,H两点.(5)作直线,交,分别于点E,F.依据以上作图,若,,,则的长是()A. B.1 C. D.4【例4-3】(2021·四川内江·中考真题)如图,菱形的顶点分别在反比例函数和的图象上,若,则的值为()A. B. C. D.【例4-4】(2021·广西来宾·中考真题)如图,矩形纸片,,点,分别在,上,把纸片如图沿折叠,点,的对应点分别为,,连接并延长交线段于点,则的值为()A. B. C. D.【例4-5】(2021·四川绵阳·中考真题)如图,在平面直角坐标系中,,,,,将四边形向左平移个单位后,点恰好和原点重合,则的值是()A.11.4 B.11.6 C.12.4 D.12.6考点五:利用相似三角形性质解决实际问题【例5-1】(2020·山西·中考真题)泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。金字塔的影长,推算出金字塔的高度。这种测量原理,就是我们所学的()A.图形的平移 B.图形的旋转 C.图形的轴对称 D.图形的相似【例5-2】(2021·河北·中考真题)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面()A. B.C. D.【例5-3】(2021·甘肃兰州·中考真题)如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为时,标准视力表中最大的“”字高度为,当测试距离为时,最大的“”字高度为()mm B. C. D.【例5-4】(2021·山西中考真题)阅读与思考,请阅读下列科普材料,并完成相应的任务.图算法图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系:得出,当时,.但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种利用特制的线条进行计算的方法就是图算法.再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?我们可以利用公式求得的值,也可以设计一种图算法直接得出结果:我们先来画出一个的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.任务:(1)请根据以上材料简要说明图算法的优越性;(2)请用以下两种方法验证第二个例子中图算法的正确性:①用公式计算:当,时,的值为多少;②如图,在中,,是的角平分线,,,用你所学的几何知识求线段的长.考点六:利用位似图形的性质求解【例6-1】(2021·重庆·中考真题)如图,△ABC与△BEF位似,点O是它们的位似中心,其中OE=2OB,则△ABC与△DEF的周长之比是()A.1:2 B.1:4 C.1:3 D.1:9【例6-2】(2021·浙江温州·中考真题)如图,图形甲与图形乙是位似图形,是位似中心,位似比为,点,的对应点分别为点,.若,则的长为()A.8 B.9 C.10 D.15【例6-3】(2020·重庆·中考真题)如图,在平面直角坐标系中,的顶点坐标分别是,,,以原点为位似中心,在原点的同侧画,使与成位似图形,且相似比为2:1,则线段DF的长度为()A. B.2 C.4 D.考点七:坐标轴与位似图形【例7-1】(2021·山东东营·中考真题)如图,中,A、B两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作的位似图形,并把的边长放大到原来的2倍,设点B的横坐标是a,则点B的对应点的横坐标是()A. B. C. D.【例7-2】(2021·重庆·中考真题)如图,在平面直角坐标系中,将以原点O为位似中心放大后得到,若,,则与的相似比是()A.2:1 B.1:2 C.3:1 D.1:3考点八:相似三角形综合【例8-1】(2021·广西百色·中考真题)如图,矩形ABCD各边中点分别是E、F、G、H,AB=2,BC=2,M为AB上一动点,过点M作直线l⊥AB,若点M从点A开始沿着AB方向移动到点B即停(直线l随点M移动),直线l扫过矩形内部和四边形EFGH外部的面积之和记为S.设AM=x,则S关于x的函数图象大致是()A. B.C. D.【例8-2】(2020·四川遂宁·中考真题)如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论:①∠AED+∠EAC+∠EDB=90°,②AP=FP,③AE=AO,④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,⑤CE•EF=EQ•DE.其中正确的结论有()A.5个 B.4个 C.3个 D.2个三,中考真题一、选择题1.(2022•凉山州)如图,在△ABC中,点D、E分别在边AB、AC上,若DE∥BC,,DE=6cm,则BC的长为()A.9cm B.12cm C.15cm D.18cm2.(2022•连云港)△ABC的三边长分别为2,3,4,另有一个与它相似的三角形DEF,其最长边为12,则△DEF的周长是()A.54 B.36 C.27 D.213.(2022•云南)如图,在△ABC中,D、E分别为线段BC、BA的中点,设△ABC的面积为S1,△EBD的面积为S2,则=()A. B. C. D.4.(2022•武威)若△ABC∽△DEF,BC=6,EF=4,则=()A. B. C. D.5.(2022•十堰)如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果OA:OC=OB:OD=3,且量得CD=3cm,则零件的厚度x为()A.0.3cm B.0.5cm C.0.7cm D.1cm6.(2022•台湾)△ABC的边上有D、E、F三点,各点位置如图所示.若∠B=∠FAC,BD=AC,∠BDE=∠C,则根据图中标示的长度,求四边形ADEF与△ABC的面积比为何?()A.1:3 B.1:4 C.2:5 D.3:87.(2022•宿迁)如图,点A在反比例函数y=(x>0)的图象上,以OA为一边作等腰直角三角形OAB,其中∠OAB=90°,AO=AB,则线段OB长的最小值是()A.1 B. C.2 D.48.(2022•孝感)如图,在矩形ABCD中,AB<BC,连接AC,分别以点A,C为圆心,大于AC的长为半径画弧,两弧交于点M,N,直线MN分别交AD,BC于点E,F.下列结论:①四边形AECF是菱形;②∠AFB=2∠ACB;③AC•EF=CF•CD;④若AF平分∠BAC,则CF=2BF.其中正确结论的个数是()A.4 B.3 C.2 D.19.(2022•山西)神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A.平移 B.旋转 C.轴对称 D.黄金分割10.(2022•湘潭)在△ABC中(如图),点D、E分别为AB、AC的中点,则S△ADE:S△ABC=()A.1:1 B.1:2 C.1:3 D.1:411.(2022•衡阳)在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m的雷锋雕像,那么该雕像的下部设计高度约是(结果精确到0.01m.参考数据:≈1.414,≈1.732,≈2.236)()A.0.73m B.1.24m C.1.37m D.1.42m12.(2022•乐山)如图,等腰△ABC的面积为2,AB=AC,BC=2.作AE∥BC且AE=BC.点P是线段AB上一动点,连结PE,过点E作PE的垂线交BC的延长线于点F,M是线段EF的中点.那么,当点P从A点运动到B点时,点M的运动路径长为()A. B.3 C.2 D.4二.填空题1.(2022•宜宾)如图,△ABC中,点E、F分别在边AB、AC上,∠1=∠2.若BC=4,AF=2,CF=3,则EF=.2.(2022•邵阳)如图,在△ABC中,点D在AB边上,点E在AC边上,请添加一个条件,使△ADE∽△ABC.3.(2022•河北)如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A,B的连线与钉点C,D的连线交于点E,则(1)AB与CD是否垂直?(填“是”或“否”);(2)AE=.4.(2022•陕西)如图,在菱形ABCD中,AB=4,BD=7.若M、N分别是边AD、BC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为.5.(2022•新疆)如图,四边形ABCD是正方形,点E在边BC的延长线上,点F在边AB上,以点D为中心,将△DCE绕点D顺时针旋转90°与△DAF恰好完全重合,连接EF交DC于点P,连接AC交EF于点Q,连接BQ,若AQ•DP=3,则BQ=.6.(2022•嘉兴)如图,在△ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为.7.(2022•陕西)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE•AB.已知AB为2米,则线段BE的长为米.8.(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=m.9.(2022•娄底)如图,已知等腰△ABC的顶角∠BAC的大小为θ,点D为边BC上的动点(与B、C不重合),将AD绕点A沿顺时针方向旋转θ角度时点D落在D′处,连接BD′.给出下列结论:①△ACD≌△ABD′;②△ACB∽△ADD′;③当BD=CD时,△ADD′的面积取得最小值.其中正确的结论有(填结论对应的应号).10.(2022•娄底)九年级融融陪同父母选购家装木地板,她感觉某品牌木地板拼接图(如实物图)比较美观,通过手绘(如图)、测量、计算发现点E是AD的黄金分割点,即DE≈0.618AD.延长HF与AD相交于点G,则EG≈DE.(精确到0.001)11.(2022•苏州)如图,在矩形ABCD中,=.动点M从点A出发,沿边AD向点D匀速运动,动点N从点B出发,沿边BC向点C匀速运动,连接MN.动点M,N同时出发,点M运动的速度为v1,点N运动的速度为v2,且v1<v2.当点N到达点C时,M,N两点同时停止运动.在运动过程中,将四边形MABN沿MN翻折,得到四边形MA′B′N.若在某一时刻,点B的对应点B′恰好与CD的中点重合,则的值为.解答题1.(2022•宜宾)如图,点C是以AB为直径的⊙O上一点,点D是AB的延长线上一点,在OA上取一点F,过点F作AB的垂线交AC于点G,交DC的延长线于点E,且EG=EC.(1)求证:DE是⊙O的切线;(2)若点F是OA的中点,BD=4,sin∠D=,求EC的长.2.(2022•常德)如图,已知AB是⊙O的直径,BC⊥AB于B,E是OA上的一点,ED∥BC交⊙O于D,OC∥AD,连接AC交ED于F.(1)求证:CD是⊙O的切线;(2)若AB=8,AE=1,求ED,EF的长.3.(2022•广元)在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,点E是边BC的中点,连结DE.(1)求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版指标房屋销售协议条款版
- 二手房交易中介协议合同范本(2024版)
- 2025年度销售业务员兼职岗位员工激励与绩效改进合同2篇
- 二零二五年度别墅景观绿化养护合同3篇
- 二零二五版国际会展中心物业全面服务与管理协议3篇
- 专业广告代理服务协议(2024版)版A版
- 2024项目合作中间人佣金协议书
- 二零二五年度鸡苗运输时间优化及效率提升合同3篇
- 二零二五版个人汽车销售代理合同模板3篇
- 二零二五年度二手汽车租赁与环保节能服务合同3篇
- 农民工工资表格
- 【寒假预习】专题04 阅读理解 20篇 集训-2025年人教版(PEP)六年级英语下册寒假提前学(含答案)
- 2024年突发事件新闻发布与舆论引导合同
- 地方政府信访人员稳控实施方案
- 小红书推广合同范例
- 商业咨询报告范文模板
- 幼儿园篮球课培训
- AQ 6111-2023个体防护装备安全管理规范知识培训
- 老干工作业务培训
- 基底节脑出血护理查房
- 高中语文《劝学》课件三套
评论
0/150
提交评论