


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高一数学有什么重要详细知识点数学学科必须培养运算能力、逻辑思维能力、空间想象力以及运用所学知识分析问题、解决问题的重任,它的特点是具有高度的抽象性、逻辑性与广泛的适用性,对能力的要求较高。以下是小编给大家整理的高一数学重要详细知识点,希望大家能够喜欢!高一数学重要详细知识点1圆锥曲线性质:一、圆锥曲线的定义1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆.2.双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线.即.3.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线.当01时为双曲线.二、圆锥曲线的方程1.椭圆:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)2.双曲线:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)3.抛物线:y2=±2px(p>0),x2=±2py(p>0)三、圆锥曲线的性质1.椭圆:+=1(a>b>0)e准线:x=-高一数学重要详细知识点2空间直角坐标系定义:过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位、这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴、通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐1、右手直角坐标系①右手直角坐标系的建立规则:x轴、y轴、z轴互相垂直,分别指向右手的拇指、食指、中指;②已知点的坐标P(x,y,z)作点的方法与步骤(路径法):xxxxy正方向(y>0时)或负方向(y<0时)移动|y|个单位,最后沿x轴正方向(z>0时)或负方z③已知点的位置求坐标的方法:在坐标平面xOy,xOz,yOz内的点分别可以表示为3、点P(a,b,c)关于x轴的对称点的坐标为(a,-b,-c);点P(a,b,c)关于y轴的对称点的坐标为(-a,b,-c);点P(a,b,c)关于z轴的对称点的坐标为(-a,-b,c);点P(a,b,c)关于坐标平面xOy的对称点为(a,b,-c);点P(a,b,c)关于坐标平面xOz的对称点为(a,-b,c);点P(a,b,c)关于坐标平面yOz的对称点为(-a,b,c);点P(a,b,c)关于原点的对称点(-a,-b,-c)。4、已知空间两点P(x1,y1,z1),Q(x2,y2,z2),则线段PQ的中点坐标为5、空间两点间的距离公式已知空间两点P(x1,y1,z1),Q(x2,y2,z2),则两点的距离为特殊点A(x,y,z)到原点O的距离为6、以C(x0,y0,z0)为球心,r为半径的球面方程为特殊地,以原点为球心,r为半径的球面方程为x2+y2+z2=r2高一数学重要详细知识点3数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集N_或它的有限子集{1,(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业支部档案管理制度
- 代理记账规范管理制度
- 乡镇社保资金管理制度
- pa日常清洁管理制度
- 乡镇文件收发管理制度
- 严重违反工作管理制度
- 乡村医生报账管理制度
- 会计公司现金管理制度
- 义工组织证书管理制度
- 传播公司财务管理制度
- 2025年湖北省高考政治试卷真题(含答案)
- 广东省深圳市宝安区2023-2024学年二年级下册期末测试数学试卷(含答案)
- 2025江苏扬州宝应县“乡村振兴青年人才”招聘67人笔试备考试题及参考答案详解
- 2025年宁夏银川灵武市选聘市属国有企业管理人员招聘笔试冲刺题(带答案解析)
- 三大监测培训试题及答案
- 两办意见宣贯考试题及答案
- 2025年汽车驾照考试科目一考试题库及参考答案
- 超市商场保密协议书
- 跨文化交际知识体系及其前沿动态
- 音响安装施工合同协议
- 日本签证个人信息处理同意书
评论
0/150
提交评论