2022年江苏省淮安市普通高校对口单招数学自考预测试题(含答案)_第1页
2022年江苏省淮安市普通高校对口单招数学自考预测试题(含答案)_第2页
2022年江苏省淮安市普通高校对口单招数学自考预测试题(含答案)_第3页
2022年江苏省淮安市普通高校对口单招数学自考预测试题(含答案)_第4页
2022年江苏省淮安市普通高校对口单招数学自考预测试题(含答案)_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年江苏省淮安市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.函数f(x)=log2(3x-1)的定义域为()A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)

2.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与x售价(元)满足一次函数:m=162-3x,若要每天获得最大的销售利润,每件商品的售价应定为()A.30元B.42元C.54元D.越高越好

3.由直线l1:3x+4y-7=0与直线l2:6x+8y+1=0间的距离为()A.8/5B.3/2C.4D.8

4.已知互为反函数,则k和b的值分别是()A.2,

B.2,

C.-2,

D.-2,

5.若集合A={1,2,3},B={1,3,4},则A∩B的子集的个数为()A.2B.3C.4D.16

6.A.-1B.0C.2D.1

7.为了了解全校240名学生的身高情况,从中抽取240名学生进行测量,下列说法正确的是()A.总体是240B.个体是每-个学生C.样本是40名学生D.样本容量是40

8.A=,是AB=的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件

9.已知函数f(x)=sin(2x+3π/2)(x∈R),下面结论错误的是()A.函数f(x)的最小正周期为π

B.函数f(x)是偶函数

C.函数f(x)是图象关于直线x=π/4对称

D.函数f(x)在区间[0,π/2]上是增函数

10.一元二次不等式x2+x-6<0的解集为A.(-3,2)B.(2,3)C.(-∞,-3)∪(2,+∞)D.(-∞,2)∪(3,+∞)

11.椭圆x2/16+y2/9的焦点坐标为()A.(,0)(-,0)

B.(4,0)(-4,0)

C.(3,0)(-3,0)

D.(7,0)(-7,0)

12.设a,b为正实数,则“a>b>1”是“㏒2a>㏒2b>0的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条

13.已知等差数列的前n项和是,若,则等于()A.

B.

C.

D.

14.不等式4-x2<0的解集为()A.(2,+∞)B.(-∞,2)C.(-2,2)D.(―∞,一2)∪(2,+∞)

15.函数A.1B.2C.3D.4

16.当时,函数的()A.最大值1,最小值-1

B.最大值1,最小值

C.最大值2,最小值-2

D.最大值2,最小值-1

17.从200个零件中抽测了其中40个零件的长度,下列说法正确的是()A.总体是200个零件B.个体是每一个零件C.样本是40个零件D.总体是200个零件的长度

18.已知甲、乙、丙3类产品共1200件,且甲、乙、丙3类产品的数量之比为3:4:5,现采用分层抽样的方法从中抽取60件,则乙类产品抽取的件数是()A.20B.21C.25D.40

19.以点(2,0)为圆心,4为半径的圆的方程为()A.(x-2)2+y2=16

B.(x-2)2+y2=4

C.(x+2)2+y2=46

D.(x+2)2+y2=4

20.设f(g(π))的值为()A.1B.0C.-1D.π

二、填空题(10题)21.函数f(x)=+㏒2x(x∈[1,2])的值域是________.

22.已知_____.

23.某校有老师200名,男学生1200名,女学生1000名,现用分层抽样的方法从所有师生中抽取一个容量为240的样本,则从女生中抽取的人数为______.

24.正方体ABCD-A1B1C1D1中AC与AC1所成角的正弦值为

25.在:Rt△ABC中,已知C=90°,c=,b=,则B=_____.

26.甲,乙两人向一目标射击一次,若甲击中的概率是0.6,乙的概率是0.9,则两人都击中的概率是_____.

27.设AB是异面直线a,b的公垂线段,已知AB=2,a与b所成角为30°,在a上取线段AP=4,则点P到直线b的距离为_____.

28.

29.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:4,现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有6件,那么n=

30.已知函数f(x)=ax3的图象过点(-1,4),则a=_______.

三、计算题(10题)31.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

32.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

33.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

34.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

35.解不等式4<|1-3x|<7

36.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

37.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

38.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

39.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

40.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

四、简答题(10题)41.一条直线l被两条直线:4x+y+6=0,3x-5y-6=0截得的线段中点恰好是坐标原点,求直线l的方程.

42.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积

43.已知抛物线的焦点到准线L的距离为2。(1)求拋物线的方程及焦点下的坐标。(2)过点P(4,0)的直线交拋物线AB两点,求的值。

44.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。

45.已知椭圆和直线,求当m取何值时,椭圆与直线分别相交、相切、相离。

46.如图:在长方体从中,E,F分别为和AB和中点。(1)求证:AF//平面。(2)求与底面ABCD所成角的正切值。

47.证明:函数是奇函数

48.已知集合求x,y的值

49.如图,四棱锥P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求证:BC丄平面PAC。(2)求点B到平面PCD的距离。

50.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.

五、解答题(10题)51.

52.

53.已知等差数列{an}的公差为2,其前n项和Sn=pnn+2n,n∈N(1)求p的值及an;(2)在等比数列{bn}中,b3=a1,b4=a2+4,若{bn}的前n项和为Tn,求证:数列{Tn+1/6}为等比数列.

54.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值

55.如图,在正方体ABCD—A1B1C1D1中,E,F分别为棱AD,AB的中点.(1)求证:EF//平面CB1D1;(2)求证:平面CAA1C1丄平面CB1D1

56.己知sin(θ+α)=sin(θ+β),求证:

57.已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为,右焦点为(,0),斜率为1的直线L与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2).(1)求椭圆G的方程;(2)求△PAB的面积.

58.

59.

60.

六、单选题(0题)61.A.11B.99C.120D.121

参考答案

1.A函数的定义.由3x-1>0,得3x>1,即3x>30,∴x>0.

2.B函数的实际应用.设日销售利润为y元,则y=(x-30)(162-3x),30≤x≤54,将上式配方得y=-3(x-42)2+432,所以x=42时,利润最大.

3.B点到直线的距离公式.因为直线l2的方程可化为3x+4y+1/2=0所以直线l1与直线l2的距离为=3/2

4.B因为反函数的图像是关于y=x对称,所以k=2.然后把一式中的x用y的代数式表达,再把x,y互换,代入二式,得到m=-3/2.

5.C集合的运算.A∩B={1,3},其子集为22=4个

6.D

7.D确定总体.总体是240名学生的身高情况,个体是每一个学生的身高,样本是40名学生的身髙,样本容量是40.

8.AA是空集可以得到A交B为空集,但是反之不成立,因此时充分条件。

9.C三角函数的性质.f(x)=sin(2x+3π/2)=-cos2x,故其最小正周期为π,故A正确;易知函数f(x)是偶函数,B正确;由函数f(x)=-cos2x的图象可知,函数f(x)的图象关于直线x=π/4不对称,C错误;由函数f(x)的图象易知,函数f(x)在[0,π/2]上是增函数,D正确,

10.A

11.A椭圆的定义c2=a2-b2=7,所以c=,所以焦点坐标为(,0)(-,0).

12.A充要条件.若a>b>1,那么㏒2a>㏒2b>0;若㏒2a>㏒26>0,那么a>b>l

13.D设t=2n-1,则St=t(t+1+1)=t(t+2),故Sn=n(n+2)。

14.D不等式的计算.4-x2<0,x2-4>0即(x-2)(x+2)>0,x>2或x<-2.

15.B

16.D,因为,所以,,,所以最大值为2,最小值为-1。

17.D总体,样本,个体,容量的概念.总体是200个零件的长度,个体是每一零件的长度,样本是40个零件的长度,样本容量是40.

18.A分层抽样方法.采用分层抽样的方法,乙类产品抽取的件数是60×4/3+4+5=20.

19.A圆的方程.当圆心坐标为(x0,y0)时,圆的-般方程为(x-x0)2+(y-y0)2=r2.

20.B值的计算.g(π)=0,f(g(π))=f(0)=0

21.[2,5]函数值的计算.因为y=2x,y=㏒2x为増函数,所以y=2x+㏒2x在[1,2]上单调递增,故f(x)∈[2,5].

22.

23.100分层抽样方法.各层之比为200:1200:1000=1:6:5推出从女生中抽取的人数240×5/12=100.

24.

,由于CC1=1,AC1=,所以角AC1C的正弦值为。

25.45°,由题可知,因此B=45°。

26.0.54,由于甲击中的事件和乙击中的事件互相独立,因此可得甲乙同时击中的概率为P=0.6*0.9=0.54.

27.

,以直线b和A作平面,作P在该平面上的垂点D,作DC垂直b于C,则有PD=,BD=4,DC=2,因此PC=,(PC为垂直于b的直线).

28.-2/3

29.72

30.-2函数值的计算.由函数f(x)=ax3-2x过点(-1,4),得4=a(-1)3-2×(-1),解得a=-2.

31.

32.

33.

34.

35.

36.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

37.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

38.

39.

40.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

41.

42.

43.(1)拋物线焦点F(,0),准线L:x=-,∴焦点到准线的距离p=2∴抛物线的方程为y2=4x,焦点为F(1,0)(2)直线AB与x轴不平行,故可设它的方程为x=my+4,得y2-4m-16=0由设A(x1,x2),B(y1,y2),则y1y2=-16∴

44.

45.∵∴当△>0时,即,相交当△=0时,即,相切当△<0时,即,相离

46.

47.证明:∵∴则,此函数为奇函数

48.

49.证明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC则BC丄平面PAC(2)设点B到平面PCD的距离为hAB//CD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论