


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
九年级《二次函数》课件4篇理解间接即通过变形运用开平方法降次解方程,并能娴熟应用它解决一些详细问题。
通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤。
重点
讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤。
难点
将不行直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧。
一、复习引入
(学生活动)请同学们解以下方程:
(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7
教师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±p或mx+n=±p(p≥0)。
如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?
二、探究新知
列出下面问题的方程并答复:
(1)列出的经化简为一般形式的方程与刚刚解题的方程有什么不同呢?
(2)能否直接用上面前三个方程的解法呢?
问题:要使一块矩形场地的长比宽多6m,并且面积为16m2,求场地的长和宽各是多少?
(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征。
(2)不能。
既然不能直接降次解方程,那么,我们就应当设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:
x2+6x-16=0移项→x2+6x=16
两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9
左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2m,长为8m.
像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法。
可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解。
例1用配方法解以下关于x的方程:
(1)x2-8x+1=0(2)x2-2x-12=0
分析:(1)明显方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上。
解:略。
三、稳固练习
教材第9页练习1,2.(1)(2)。
四、课堂小结
本节课应把握:
左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程。
五、作业布置
九年级《二次函数》课件篇二
教学目标
(一)教学学问点
1、能够利用二次函数的图象求一元二次方程的近似根。
2、进一步进展估算力量。
(二)力量训练要求
1、经受用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。
2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想。
(三)情感与价值观要求
通过利用二次函数的图象估量一元二次方程的根,进一步把握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算力量。
教学重点
1、经受探究二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2、能够利用二次函数的图象求一元二次方程的近似根。
教学难点
利用二次函数的图象求一元二次方程的近似根。
教学方法
学生合作沟通学习法。
教具预备
投影片三张
第一张:(记作§2.8.2A)
其次张:(记作§2.8.2B)
第三张:(记作§2.8.2C)
教学过程
Ⅰ。创设问题情境,引入新课
[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的状况下,只要知道二次函数与x轴交点的横坐标即可。但是在图象上我们很难精确地求出方程的解,所以要进展估算。本节课我们将学习利用二次函数的图象估量一元二次方程的根。
九年级《二次函数》课件篇三
理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些详细问题。
提出问题,列出缺一次项的一元二次方程ax2+c=0,依据平方根的意义解出这个方程,然后学问迁移到解a(ex+f)2+c=0型的一元二次方程。
重点
运用开平方法解形如(x+m)2=n(n≥0)的方程,领悟降次——转化的数学思想。
难点
通过依据平方根的意义解形如x2=n的方程,将学问迁移到依据平方根的意义解形如(x+m)2=n(n≥0)的方程。
一、复习引入
学生活动:请同学们完成以下各题。
问题1:填空
(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.
解:依据完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.
问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?
二、探究新知
上面我们已经讲了x2=9,依据平方根的意义,直接开平方得x=±3,假如x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?
(学生分组争论)
教师点评:答复是确定的,把2t+1变为上面的x,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的两根为t1=1,t2=-2
例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2
分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.
(2)由已知,得:(x+3)2=2
直接开平方,得:x+3=±2
即x+3=2,x+3=-2
所以,方程的两根x1=-3+2,x2=-3-2
解:略。
例2市政府规划2年内将人均住房面积由现在的10m2提高到14.4m2,求每年人均住房面积增长率。
分析:设每年人均住房面积增长率为x,一年后人均住房面积就应当是10+10x=10(1+x);二年后人均住房面积就应当是10(1+x)+10(1+x)x=10(1+x)2
解:设每年人均住房面积增长率为x,
则:10(1+x)2=14.4
(1+x)2=1.44
直接开平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的两根是x1=0.2=20%,x2=-2.2
由于每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去。
所以,每年人均住房面积增长率应为20%。
(学生小结)教师引导提问:解一元二次方程,它们的共同特点是什么?
共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程。我们把这种思想称为“降次转化思想”。
三、稳固练习
教材第6页练习。
四、课堂小结
本节课应把握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,到达降次转化之目的。若p0则方程无解。
五、作业布置
九年级《二次函数》课件篇四
1、通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念。
2、了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解。
重点
通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简洁问题。
难点
一元二次方程及其二次项系数、一次项系数和常数项的识别。
活动1复习旧知
1、什么是方程?你能举一个方程的例子吗?
2、以下哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式。
(1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=1
3、以下哪个实数是方程2x-1=3的解?并给出方程的解的概念。
A.0B.1C.2D.3
活动2探究新知
依据题意列方程。
1、教材第2页问题1.
提出问题:
(1)正方形的大小由什么量打算?此题应当设哪个量为未知数?
(2)此题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?
(3)这个方程能整理为比拟简洁的形式吗?请说出整理之后的方程。
2、教材第2页问题2.
提出问题:
(1)此题中有哪些量?由这些量可以得到什么?
(2)竞赛队伍的数量与竞赛的场次有什么关系?假如有5个队参赛,每个队竞赛几场?一共有20场竞赛吗?假如不是20场竞赛,那么毕竟竞赛多少场?
(3)假如有x个队参赛,一共竞赛多少场呢?
3、一个数比另一个数大3,且两个数之积为0,求这两个数。
提出问题:
此题需要设两个未知数吗?假如可以设一个未知数,那么方程应当怎么列?
4、一个正方形的面积的2倍等于25,这个正方形的边长是多少?
活动3归纳概念
提出问题:
(1)上述方程与一元一次方程有什么一样点和不同点?
(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?
(3)归纳一元二次方程的概念。
1、一元二次方程:只含有________个未知数,并且未知数的次数是________,这样的________方程,叫做一元二次方程。
2、一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
提出问题:
(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?
(2)为什么要限制a≠0,b,c可以为0吗?
(3)2x2-x+1=0的一次项系数是1吗?为什么?
3、一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根)。
活动4例题与练习
例1在以下方程中,属于一元二次方程的是________.
(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;
(4)2x2-2x(x+7)=0.
总结:推断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是2.留意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程。
例2教材第3页例题。
例3以-2为根的一元二次方程是()
A.x2+2x-1=0B.x2-x-2=0
C.x2+x+2=0D.x2+x-2=0
总结:推断一个数是否为方程的解,可以将这个数代入方程,推断方程左、右两边的值是否相等。
练习:
1、若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.
2、将以下一元二次方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 证据材料审查的基本准则
- 小班糖葫芦课件
- 家政公司月嫂月子服务培训
- 疫情防控三分专项施工方案
- 儿童静脉治疗安全与管理
- 多样化艺术形式在学校的应用计划
- 义务教育法简单普及
- 防撞门施工方案
- 快速钣喷培训
- 木作大漆施工方案
- 2025新人教版七下英语单词默写表
- 四川凉山州人民政府办公室考调所属事业单位工作人员2人高频重点提升(共500题)附带答案详解
- 2025年国家信息中心招聘15人高频重点提升(共500题)附带答案详解
- 基于STM32单片机的人体感应灯设计
- 教学课件英语人教版2024版七年级初一上册Unit 1 You and Me Section A1a1d2
- 畜牧业边境管理办法
- 化工行业保安工作计划
- 人教版一年级数学上册《6-10的认识和加减法》同步练习题及答案
- 二十案例示轮回
- 老年营养示范化病房创建方案
- 24年国开建筑工程估价实训报告
评论
0/150
提交评论