版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第页码30页/总NUMPAGES总页数30页2022-2023学年四川省成都市七年级上册数学期中专项提升模拟(A卷)一、选一选(本大题共10小题,共30分)1.﹣3的相反数是()A. B. C. D.2.据报载,2016年研究生考试报考人数为1770000人,其中1770000用科学记数法表示为()A.0.177107 B.1.77107 C.1.77106 D.1771043.若,,则为A. B. C. D.或4.单项式9xmy3与单项式4x2yn是同类项,则m+n的值是()A.2 B.5 C.4 D.35.(3分)下列说确的是()A.数2既没有是单项式也没有是多项式B.是单项式C.﹣mn5是5次单项式D.﹣x2y﹣2x3y是四次二项式6.去括号正确的是()A-(3x+2)=-3x+2 B.-(-2x-7)=-2x+7C.-(3x-2)=3x+2 D.-(-2x+7)=2x-77.若方程2x=8和方程ax+2x=4解相同,则a的值为()A.1 B.﹣1 C.±1 D.08.下列变形是属于移项的是()A.由2x=2,得x=1 B.由=﹣1,得x=﹣2C.由3x﹣=0,得3x= D.由﹣2x﹣2=0,得x=﹣19.班主任老师在七年级(1)班新生分组时发现,若每组7人则多2人,若每组8人则少4人,那么这个班的学生人数是()人.A.56 B.51 C.44 D.4010.探索规律:71=7,72=49,73=343,74=2401,75=16807,…那么72007+1的个位数字是()A.8 B.4 C.2 D.0二、填空题(本大题共8小题,共24分)11.化简:﹣[+(﹣6)]=_____.12.比较大小:①_____﹣(+);②+(﹣5)_____﹣|﹣17|;③﹣32_____(﹣2)3.13.若a,b为有理数,现规定一种新运算“⊕”,满足a⊕b=ab+1,则(2⊕3)⊕(﹣3)的值是_____.14.有理数0.397到0.01的结果是_____.15.按a的降幂排列多项式a4﹣7a+6﹣4a3为_____.16.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知m+n=﹣2,mn=﹣4,则2(mn﹣3m)﹣3(2n﹣mn)的值为_______.17.如果方程ax|a﹣1|+3=4是关于x的一元方程,则a的值为______.18.已知:13=1=×1×2213+23=9=×22×3213+23+33=36=×32×4213+23+33+43=100=×42×52…根据上述规律计算:13+23+33+…+193+203=_____.三、计算题(本大题共4小题,共33分)19.计算:(1)(﹣7)﹣(﹣10)+(﹣8)﹣(+2)(2)(3)﹣3×|﹣2|+(﹣28)÷(﹣7)(4)﹣32﹣(﹣2)3÷4.20.化简:(1)2a﹣3b+6a+9b﹣8a+12b(2)(7y﹣3z)﹣2(8y﹣5z)21.先化简,再求值:﹣(x2﹣1)+2(x2﹣2x﹣),其中x=﹣2.22.解方程:(1)4x﹣1=3(2)3(2x﹣3)﹣7x=2.四、解答题(本大题共5小题,共33分)23.看数轴,化简:|a|﹣|b|+|a﹣2|.24.先化简,再求值:已知(a﹣1)2+|b+2|=0,求代数式﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b)的值.25.阅读下面材料:在数轴上与所对的两点之间的距离:;在数轴上与所对两点之间的距离:;在数轴上与所对的两点之间的距离:;在数轴上点、分别表示数、,则、两点之间的距离.回答下列问题:(1)数轴上表示和两点之间的距离是_______;数轴上表示数和的两点之间的距离表示为_______;数轴上表示数_______和_______的两点之间的距离表示为;(2)七年级研究性学习小组在数学老师指导下,对式子进行探究:①请你在草稿纸上画出数轴,当表示数的点在与之间移动时,的值总是一个固定的值为:_______.②请你在草稿纸上画出数轴,要使,数轴上表示点的数_______.26.关于x多项式﹣4x2+mx+nx2﹣3x+10的值与x无关,求5m﹣2n的值.27.安宁市的一种绿色蔬菜,若在市场上直接,每吨利润为1000元,若经粗加工后,每吨利润可达4500元;若经精加工后每吨获利7500元.当地一家农产品企业收购这种蔬菜140吨,该企业加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式没有能同时进行,受季节条件,企业必须在15天的时间将这批蔬菜全部或加工完毕,企业研制了四种可行:一:全部直接;二:全部进行粗加工;三:尽可能多地进行精加工,没有来得及进行精加工的直接;四:将一部分进行精加工,其余的进行粗加工,并恰好15天完成.请通过计算以上四个的利润,帮助企业选择一个使所获利润至多?2022-2023学年四川省成都市七年级上册数学期中专项提升模拟(A卷)一、选一选(本大题共10小题,共30分)1.﹣3的相反数是()A. B. C. D.【正确答案】D【分析】相反数的定义是:如果两个数只有符号没有同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.本题考查相反数,题目简单,熟记定义是关键.2.据报载,2016年研究生考试报考人数为1770000人,其中1770000用科学记数法表示为()A.0.177107 B.1.77107 C.1.77106 D.177104【正确答案】C【分析】科学记数法表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数值>10时,n是正数;当原数的值<1时,n是负数.【详解】解:1770000=1.77×106,故选C.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.若,,则为A. B. C. D.或【正确答案】D【分析】根据题意,利用值的代数意义求出x与y的值,即可确定出x-y的值.【详解】解:∵|x|=7,|y|=9,
∴;
则x-y=-16或2或-2或16.
故选D.此题考查了有理数的减法,值,熟练掌握运算法则是解本题的关键.4.单项式9xmy3与单项式4x2yn是同类项,则m+n的值是()A.2 B.5 C.4 D.3【正确答案】B【分析】根据同类项的定义,可得m,n的值,根据有理数的加法,可得答案.【详解】由题意,得m=2,n=3.m+n=2+3=5,故选B.此题考查同类项,解题关键在于掌握其定义.5.(3分)下列说确的是()A.数2既没有是单项式也没有是多项式B.是单项式C.﹣mn5是5次单项式D.﹣x2y﹣2x3y是四次二项式【正确答案】D【详解】试题解析:A、2是单项式,故本选项错误;B、是多项式,故本选项错误;C、是6次单项式,故本选项错误;D、是4次2项式,故本选项正确;故选D.点睛:数与字母的乘积组成的式子就是单项式.单独的一个数或者一个字母也是单项式.单项式中所有字母的指数的和就是单项式的次数.6.去括号正确的是()A.-(3x+2)=-3x+2 B.-(-2x-7)=-2x+7C.-(3x-2)=3x+2 D.-(-2x+7)=2x-7【正确答案】C【详解】试题分析:去括号时,括号前是正号,括到括号里的各项没有变符号,去括号时,括号前是负号,括到括号里的各项都改变符号.A选项结果应是-3x-2,故A错误;B选项结果应是2x+7,故B错误;C选项结果应是-3x+2,故C错误;D选项结果正确,故选D.考点:去括号法则.7.若方程2x=8和方程ax+2x=4的解相同,则a的值为()A.1 B.﹣1 C.±1 D.0【正确答案】B【详解】解2x=8,得
x=4.
由同解方程,得
4a+2×4=4.
解得a=-1,
故选B.8.下列变形是属于移项的是()A.由2x=2,得x=1 B.由=﹣1,得x=﹣2C.由3x﹣=0,得3x= D.由﹣2x﹣2=0,得x=﹣1【正确答案】C【详解】试题解析:下列变形是属于移项的是由,得故选C.9.班主任老师在七年级(1)班新生分组时发现,若每组7人则多2人,若每组8人则少4人,那么这个班的学生人数是()人.A.56 B.51 C.44 D.40【正确答案】C【分析】设分成x个小组,然后用两种方法表示出总人数,根据总人数没有变列方程求解即可.【详解】设将这些学生分成x个小组.
根据题意得:7x+2=8x−4.
解得:x=6.
7x+2=7×6+2=44.
故选C.本题考查一元方程的应用,解题的关键是读懂题意得到等式.10.探索规律:71=7,72=49,73=343,74=2401,75=16807,…那么72007+1的个位数字是()A.8 B.4 C.2 D.0【正确答案】B【详解】试题解析:因为2007÷4=501…3,故72007的个位数字是3,故72007+1个位数字是4.故选B.二、填空题(本大题共8小题,共24分)11.化简:﹣[+(﹣6)]=_____.【正确答案】6【分析】根据相反数的定义解答即可.【详解】解:﹣[+(﹣6)]=﹣(﹣6)=6.故6.本题考查了相反数的定义,是基础题,计算时要注意符号的处理.12.比较大小:①_____﹣(+);②+(﹣5)_____﹣|﹣17|;③﹣32_____(﹣2)3.【正确答案】①.=②.>③.<【详解】试题解析:①②③故答案为点睛:两个负数,值大的反而小.13.若a,b为有理数,现规定一种新运算“⊕”,满足a⊕b=ab+1,则(2⊕3)⊕(﹣3)的值是_____.【正确答案】-20【详解】解:根据题中的新定义得:故14.有理数0.397到0.01的结果是_____.【正确答案】0.40.【详解】试题解析:把0.397到0.01,即对千分位的数字进行四舍五入,是0.40.故答案为0.40.15.按a的降幂排列多项式a4﹣7a+6﹣4a3为_____.【正确答案】a4﹣4a3﹣7a+6.【详解】试题解析:按的降幂排列为:故答案为16.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知m+n=﹣2,mn=﹣4,则2(mn﹣3m)﹣3(2n﹣mn)的值为_______.【正确答案】﹣8.【详解】试题分析:∵m+n=﹣2,mn=﹣4,∴原式=2mn﹣6m﹣6n+3mn=5mn﹣6(m+n)=﹣20+12=﹣8.故答案为﹣8.考点:整式的加减—化简求值.17.如果方程ax|a﹣1|+3=4是关于x的一元方程,则a的值为______.【正确答案】2.【详解】由题意,得|a﹣1|=1且a≠0,解得a=2,故答案为2.本题考查了一元方程的定义,解题的关键是明确一元方程是指只含有一个未知数,未知数的指数是1,项系数没有是0.18.已知:13=1=×1×2213+23=9=×22×3213+23+33=36=×32×4213+23+33+43=100=×42×52…根据上述规律计算:13+23+33+…+193+203=_____.【正确答案】44100.【详解】试题解析:∵故答案为44100.三、计算题(本大题共4小题,共33分)19.计算:(1)(﹣7)﹣(﹣10)+(﹣8)﹣(+2)(2)(3)﹣3×|﹣2|+(﹣28)÷(﹣7)(4)﹣32﹣(﹣2)3÷4.【正确答案】(1)﹣7;(2)﹣1;(3)﹣2;(4)﹣7.【详解】试题分析:按照有理数的混合运算的顺序进行运算即可.试题解析:(1)原式(2)原式(3)原式(4)原式20.化简:(1)2a﹣3b+6a+9b﹣8a+12b(2)(7y﹣3z)﹣2(8y﹣5z)【正确答案】(1)18b;(2)﹣9y+7z.【分析】(1)合并同类项即可.(2)去括号,合并同类项即可.【详解】(1)原式(2)原式本题考查了整式的加减,熟记合并同类项,去括号法则是解题关键.21.先化简,再求值:﹣(x2﹣1)+2(x2﹣2x﹣),其中x=﹣2.【正确答案】x2﹣4x,12【详解】试题分析:去括号,合并同类项,把字母的值代入运算即可.试题解析:原式当时,原式22.解方程:(1)4x﹣1=3(2)3(2x﹣3)﹣7x=2.【正确答案】(1)x=1;(2)x=﹣11.【详解】试题分析:按照解一元方程的步骤解方程即可.试题解析:(1)(2)点睛:解一元方程的常用步骤:去分母,去括号,移项,合并同类项,把系数化为1.四、解答题(本大题共5小题,共33分)23.看数轴,化简:|a|﹣|b|+|a﹣2|.【正确答案】2+b.【分析】根据各点在数轴上的位置判断出其符号,再根据值的性质去值符号,合并同类项即可.【详解】解:∵由图可知,b<0<a<2,∴原式=a+b+(2−a),=2+b.24.先化简,再求值:已知(a﹣1)2+|b+2|=0,求代数式﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b)的值.【正确答案】﹣ab2,-4【详解】试题分析:先根据非负数的性质可求,然后将所求代数式去括号、合并同类项化成最简,即将代入求值.试题解析:∵(a−1)2+|b+2|=0,且∴a−1=0,b+2=0,∴a=1,b=−2,原式当a=1,b=−2时,原式=−1×(−2)2=−1×4=−4.25.阅读下面材料:在数轴上与所对的两点之间的距离:;在数轴上与所对的两点之间的距离:;在数轴上与所对的两点之间的距离:;在数轴上点、分别表示数、,则、两点之间的距离.回答下列问题:(1)数轴上表示和的两点之间的距离是_______;数轴上表示数和两点之间的距离表示为_______;数轴上表示数_______和_______的两点之间的距离表示为;(2)七年级研究性学习小组在数学老师指导下,对式子进行探究:①请你在草稿纸上画出数轴,当表示数的点在与之间移动时,的值总是一个固定的值为:_______.②请你在草稿纸上画出数轴,要使,数轴上表示点的数_______.【正确答案】(1)3;|x−3|;x,-2;(2)5;−3或4.【分析】(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可;(2)①先化简值,然后合并同类项即可;②分为x>3和x<−2两种情况讨论.【详解】解:(1)数轴上表示−2和−5的两点之间的距离为:|−2−(−5)|=3;数轴上表示数x和3的两点之间的距离为:|x−3|;数轴上表示数x和−2的两点之间的距离表示为:|x+2|;故3,|x−3|,x,-2;(2)①当x在-2和3之间移动时,|x+2|+|x−3|=x+2+3−x=5;②当x>3时,x−3+x+2=7,解得:x=4,当x<−2时,3−x−x−2=7.解得x=−3,∴x=−3或x=4.故5;−3或4.本题主要考查的是值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的关键.26.关于x的多项式﹣4x2+mx+nx2﹣3x+10的值与x无关,求5m﹣2n的值.【正确答案】7【详解】试题分析:先将同类项合并,根据结果与无关,可得系数为0,继而可得的值,代入运算即可.试题解析:∵关于x的多项式的值与x无关,∴−4+n=0,m−3=0,∴m=3,n=4,∴5m−2n=7.27.安宁市一种绿色蔬菜,若在市场上直接,每吨利润为1000元,若经粗加工后,每吨利润可达4500元;若经精加工后每吨获利7500元.当地一家农产品企业收购这种蔬菜140吨,该企业加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式没有能同时进行,受季节条件,企业必须在15天的时间将这批蔬菜全部或加工完毕,企业研制了四种可行:一:全部直接;二:全部进行粗加工;三:尽可能多地进行精加工,没有来得及进行精加工的直接;四:将一部分进行精加工,其余的进行粗加工,并恰好15天完成.请通过计算以上四个的利润,帮助企业选择一个使所获利润至多?【正确答案】企业选择四所获利润至多.【详解】试题分析:根据总利润=单吨利润×质量即可求出一、二、三利润,在四种,设精加工吨食蔬菜,则粗加工吨蔬菜,根据每天可精加工6吨或粗加工16吨加工总天数为15天即可得出关于的一元方程,解之即可得出的值,进而得出的值,再根据总利润=精加工部分的利润+粗加工部分的利润求出四的利润,将四种获得的利润比较后即可得出结论.试题解析:一可获利润:140×1000=140000(元);二可获利润:4500×140=630000(元);三可获利润:15×6×7500+(140−15×6)×1000=725000(元);四:设精加工x吨食蔬菜,则粗加工(140−x)吨蔬菜,根据题意得:解得:x=60,∴140−x=80.此情况下利润:60×7500+80×4500=810000(元),∵140000<630000<725000<810000,∴企业选择四所获利润至多.2022-2023学年四川省成都市七年级上册数学期中专项提升模拟(B卷)一、选一选:(12个小题,每个小题3分,共36分.)1.下列说法没有正确的是()A.任何一个有理数的值都是正数B.0既没有是正数也没有是负数C.有理数可以分为正有理数,负有理数和零D.0的值等于它的相反数2.如果水位下降3米记作-3米,那么水位上升4米记作()A.1米 B.7米 C.+4米 D.-7米3.给出下列判断:①单项式的系数是5;②是二次三项式;③多项式的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中正确的判断有()A1个 B.2个 C.3个 D.4个4.若|x|=2,|y|=3,则|x+y|值为()A5 B.﹣5 C.5或1 D.以上都没有对5.明天数学课要学“勾股定理”,小颖在“”搜索引擎中输入“勾股定理”,能搜到与之相关的结果个数约为12500000,这个数用科学记数法表示为()A. B. C. D.6.买一个足球需元,买一个篮球需元,则买4个足球和7个篮球共需()元.A. B. C. D.7.点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:ab>0,其中正确的是()A.甲、乙 B.丙、丁 C.甲、丙 D.乙、丁8.两个互为相反数的有理数相乘,积为()A.正数 B.负数 C.零 D.负数或零9.下列运算中结果正确是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xyC.3y2﹣2y2=1 D.3x2+2x=5x310.若时,式子的值为,则当时,式子的值为().A. B. C. D.11.已知|a-2|+(b+3)2=0,则的值是()A.-6 B.6 C.-9 D.912.观察下面的一列单项式:-x,2x2,-4x3,8x4,-16x5,…,根据其中的规律,得出的第10个单项式是()A.-29x9 B.29x9 C.-29x10 D.29x10二、填空题:(6个小题,每个小题4分,共24分)13.比较大小:_____.14.若与是同类项,则m-n=______.15.计算|﹣2|﹣(﹣1)+33的结果是_____.16.﹣5.5的值是_____,倒数是_____,相反数是_____.17.在﹣2,﹣15,9,0,|﹣10|这五个有理数中,的数是_____,最小的数是_____.18.已知A=3x3+2x2﹣5x+7m+2,B=2x2+mx﹣3,若多项式A+B没有含项,则多项式A+B的常数项是_____.三、解答题(8个小题共90分)19.计算题:(1)﹣5﹣65;(2)(﹣002)×(﹣20)×(﹣5)÷;(3)4+(﹣2)2×2﹣(﹣36)÷4;(4)﹣2﹣|﹣3|+(﹣2)2.20.在数轴上表示下列各数及它们的相反数:3,-3,0,—1.5,并把所有的数用“<”号连接.21.化简求值:4xy-(2x2+5xy-y2)+2(x2+3xy),其中..22.某人用400元购买了8套儿童服装,准备以一定价格出售.如果以每套儿童服装55元的价格为标准,超出的记作正数,没有足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣3(单位:元);请通过计算说明:(1)当他卖完这八套儿童服装后是盈利还是亏损?盈利(或亏损)了多少钱?(2)每套儿童服装的平均售价是多少元?23.规定一种新运算“※”,两数a,b通过“※”运算得(a+2)×2﹣b,即a※b=(a+2)×2﹣b,例如:3※5=(3+2)×2﹣5=10﹣5=5.根据上面规定解答下题:(1)求(7※5)※(﹣3)(2)7※(﹣3)与(﹣3)※7的值相等吗?24.已知a+b=4,ab=﹣2,求代数式(2a﹣5b﹣2ab)﹣(a﹣6b﹣ab)的值.25.已知,.化简:;已知与的同类项,求的值.26.根据题目完成下表某校团委组织了有奖征文,并设立了一、二、三等奖,根据设奖情况买了50件,其二等奖的件数比一等奖的件数的2倍少10,各种的单价如下表所示:一等奖二等奖三等奖单价/元12105数量/件x如果计划一等奖买x件,买50件的总金额为y元.(1)先填表,再用含x的代数式表示y并化简;(2)若一等奖买10件,则共花费多少元?2022-2023学年四川省成都市七年级上册数学期中专项提升模拟(B卷)一、选一选:(12个小题,每个小题3分,共36分.)1.下列说法没有正确的是()A.任何一个有理数的值都是正数B.0既没有是正数也没有是负数C.有理数可以分为正有理数,负有理数和零D.0的值等于它的相反数【正确答案】A【详解】任何一个有理数的值都是非负数.故A选项错误,0既没有是正数也没有是负数,故B选项正确,有理数可以分为正有理数,负有理数和零,故C选项正确,0的值等于它的相反数,故D选项正确.故选:A.2.如果水位下降3米记作-3米,那么水位上升4米记作()A.1米 B.7米 C.+4米 D.-7米【正确答案】C【分析】根据正数和负数表示相反意义的量,下降记为负,则上升记为正,即可求解本题.【详解】解:如果水位下降3米记作-3米,那么水位上升4米记作+4米;故选:C.本题考查了正数和负数,相反意义的量用正数和负数表示.3.给出下列判断:①单项式的系数是5;②是二次三项式;③多项式的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中正确的判断有()A.1个 B.2个 C.3个 D.4个【正确答案】A【分析】由整式的性质对结论进行判断即可.【详解】①单项式系数是,故结论错误;②是二次三项式,故结论正确;③多项式的次数是4,故结论错误;④几个有理数相乘,当负因数有奇数个时,积为负.若任意一个有理数为0,则积为0,故结论错误.综上所述,只有②一个结论是正确的.故选:A.本题考查了整式的性质,需熟练掌握单项式的系数、次数的判断,多项式的次数、项数、项的判断以及0属于有理数.4.若|x|=2,|y|=3,则|x+y|的值为()A.5 B.﹣5 C.5或1 D.以上都没有对【正确答案】C【详解】∵|x|=2,|y|=3,
∴x=2或-2,y=3或-3,
当x=2,y=3时,│x+y│=5;
当x=-2,y=3时,│x+y│=1;当x=-2,y=-3时,│x+y│=5;
当x=-2,y=3时,│x+y│=1;所以|x+y|的值是1或5.故选:C.5.明天数学课要学“勾股定理”,小颖在“”搜索引擎中输入“勾股定理”,能搜到与之相关的结果个数约为12500000,这个数用科学记数法表示为()A. B. C. D.【正确答案】C【分析】
【详解】∵12500000共有8位数,∴n=8−1=7,∴12500000用科学记数法表示为:1.25×107故选C.6.买一个足球需元,买一个篮球需元,则买4个足球和7个篮球共需()元.A. B. C. D.【正确答案】D【分析】根据题意列出代数式即可,根据足球的价格乘以数量加上篮球的价格乘以数量.【详解】解:∵买一个足球需元,买一个篮球需元,∴则买4个足球和7个篮球共需元故选D本题考查了列代数式,理解题意是解题的关键.7.点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:ab>0,其中正确的是()A.甲、乙 B.丙、丁 C.甲、丙 D.乙、丁【正确答案】C【详解】试题解析:甲正确.乙错误丙正确.丁错误.故选C8.两个互为相反数的有理数相乘,积为()A.正数 B.负数 C.零 D.负数或零【正确答案】D【详解】解:互为相反数的两数,若是异号,则乘积为负数,若是零,则乘积为零,所以两个互为相反数的有理数相乘,积为负数或零.故选D.本题考查相反数;有理数的乘法.9.下列运算中结果正确是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xyC.3y2﹣2y2=1 D.3x2+2x=5x3【正确答案】B【分析】根据同类项的概念与合并同类项法则逐一判断即可.【详解】A、3a+2b,无法合并,故此选项错误;B、﹣4xy+2xy=﹣2xy,正确;C、3y2﹣2y2=y2,故此选项错误;D、3x2+2x,无法合并,故此选项错误;故选B.本题考查了同类项和合并同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同及合并同类项法则.10.若时,式子的值为,则当时,式子的值为().A. B. C. D.【正确答案】C【分析】先把代入式子可得,则有,然后把代入式子,进而利用整体法进行求解即可.【详解】解:把代入式子得:,∴,把代入式子得:,∵,∴;故选C.本题主要考查代数式的值,熟练掌握利用整体代入法进行求解代数式的值是解题的关键.11.已知|a-2|+(b+3)2=0,则的值是()A.-6 B.6 C.-9 D.9【正确答案】D【分析】根据非负性求出a,b,故可求解.【详解】∵|a-2|+(b+3)2=0,∴a-2=0,b+3=0解得a=2,b=-3∴=(-3)2=9故选D.此题主要考查非负性的应用,解题的关键是熟知值与乘方的性质及运算法则.12.观察下面的一列单项式:-x,2x2,-4x3,8x4,-16x5,…,根据其中的规律,得出的第10个单项式是()A.-29x9 B.29x9 C.-29x10 D.29x10【正确答案】D【分析】观察第n个数的规律:n为奇数时,符号为负,n为偶数时符号为正,所以符号可以用表示,系数的值是,x的指数是n,据此可以表示出第n个数,代入n=10可得出答案.【详解】观察规律得第n个数可表示为:,所以第10个数为,即,故选D.本题考查单项式的规律,通过所给的单项式,分别找出系数和次数的规律是解题的关键.二、填空题:(6个小题,每个小题4分,共24分)13.比较大小:_____.【正确答案】>【详解】∵,∴14.若与是同类项,则m-n=______.【正确答案】9【详解】解:由题意得,,解得,则故9.15.计算|﹣2|﹣(﹣1)+33的结果是_____.【正确答案】30【详解】原式=2+1+27=30,故30.16.﹣5.5的值是_____,倒数是_____,相反数是_____.【正确答案】①.5.5②.﹣③.5.5【详解】依据值、倒数、相反数的定义得:﹣5.5的值是=5.5,倒数是﹣,相反数是-(-5.5)=5.5.故答案为5.5;﹣;5.5.17.在﹣2,﹣15,9,0,|﹣10|这五个有理数中,的数是_____,最小的数是_____.【正确答案】①.|﹣10|②.﹣15【详解】∵|-10|=10,-15<-2<0<9<10,∴-15<-2<0<9<|-10|,∴的数是|-10|,最小的数是-15,故答案为|-10|,-15.18.已知A=3x3+2x2﹣5x+7m+2,B=2x2+mx﹣3,若多项式A+B没有含项,则多项式A+B的常数项是_____.【正确答案】34【详解】∵A+B=(3x3+2x2﹣5x+7m+2)+(2x2+mx﹣3)=3x3+2x2﹣5x+7m+2+2x2+mx﹣3=3x2+4x2+(m﹣5)x+7m﹣1∵多项式A+B没有含项,∴m﹣5=0,∴m=5,∴多项式A+B的常数项是34,故34本题考查整式的加减,解题的关键是熟练掌握整式的加减法则.三、解答题(8个小题共90分)19.计算题:(1)﹣5﹣65;(2)(﹣0.02)×(﹣20)×(﹣5)÷;(3)4+(﹣2)2×2﹣(﹣36)÷4;(4)﹣2﹣|﹣3|+(﹣2)2.【正确答案】(1)-70;(2)-9;(3)21;(4)-1.【详解】试题分析:(1)根据减法法则计算可得;(2)根据乘除混合运算顺序和运算法则计算可得;(3)先计算乘方,再计算乘除,计算加减可得;(4)先计算乘方和值,再计算加减可得.试题解析:(1)原式=﹣(5+65)=﹣70;(2)原式=0.4×(﹣5)×=﹣9;(3)原式=4+4×2﹣(﹣9)=4+8+9=21;(4)原式=﹣2﹣3+4=﹣1.20.在数轴上表示下列各数及它们的相反数:3,-3,0,—1.5,并把所有的数用“<”号连接.【正确答案】如图所示见解析,【分析】先写出各数的相反数,再将所有的数标在数轴上,根据右边的数比坐标的大排列即可.【详解】解:3的相反数是-3,
-3的相反数是3,
0的相反数是0,-1.5的相反数是1.5.
在数轴上可表示为:
用“<”连接:本题考查利用数轴比较有理数的大小,当向右为正方向时,右边的数总比左边的大.21.化简求值:4xy-(2x2+5xy-y2)+2(x2+3xy),其中..【正确答案】5xy+y2,﹣4.【详解】试题分析:首先去括号合并同类项,再得出x,y的值代入即可.解:原式=4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)=4xy﹣2x2﹣5xy+y2+2x2+6xy=5xy+y2,∵|x+2|+(y﹣)2=0,∴x=﹣2,y=,故原式=5×(﹣2)×+=﹣4.22.某人用400元购买了8套儿童服装,准备以一定价格出售.如果以每套儿童服装55元的价格为标准,超出的记作正数,没有足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣3(单位:元);请通过计算说明:(1)当他卖完这八套儿童服装后是盈利还是亏损?盈利(或亏损)了多少钱?(2)每套儿童服装的平均售价是多少元?【正确答案】(1)当他卖完这八套儿童服装后是盈利了,盈利了36元;(2)每套儿童服装的平均售价是54.5元.【分析】(1)将数据求和,就是和55元偏离的值,用总价减去成本就是盈利.(2)用总售价除以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学信息技术课件教学
- 四年级《呼风唤雨的世纪》课件
- 学校采购合同范本正规版8篇
- 《上机作业:水龙头》课件
- 八上语文第六单元复习
- 大学生创业法律指南1
- 《精致商务》课件
- 《大学物理功》课件
- 夫妻出资消费协议书(2篇)
- 2021年湖南省长沙市公开招聘警务辅助人员(辅警)笔试经典练习卷(B)含答案
- 书法生职业生涯规划
- 静脉治疗的风险管理课件
- 2024年极兔速递有限公司招聘笔试参考题库附带答案详解
- 2023-2024年行政执法综合知识考试题库(附含答案)
- 规划设计方案审批全流程
- 未成年被害人“一站式办案”工作室建设与运行规范
- 《中外历史纲要(上)》期末专题复习提纲
- 2024年考研政治试题及详细解析
- 征兵工作试题
- 情绪调试-再见emo你好+Emotion+高一下学期心理健康教育课(通用版)
- TCALC 003-2023 手术室患者人文关怀管理规范
评论
0/150
提交评论