在教学中如何更好的应用思维导图_第1页
在教学中如何更好的应用思维导图_第2页
在教学中如何更好的应用思维导图_第3页
在教学中如何更好的应用思维导图_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

在教学中如何更好的应用思维导图思维导图由英国心理学家托尼·巴赞于1970年提出,它作为一种新的思维模式,结合了全脑的概念,包括左脑的逻辑、顺序、条例、文字、数字及右脑的图像、想象、颜色、空间、整体等。思维导图不仅作为辅助思考的工具,贯穿大脑信息加工的各个阶段,同时作为处理知识及学习知识的有效的新方法,直接应用到知识学习过程中。思维导图是一种图像式思维的工具,也是一种利用图像式思考来表达思维的工具.思维导图是使用一个中央关键词或者想法引起形象化的构造和分类的想法,它用一个中央关键词或者想法以辐射线型连接所有的代表字词、想法、任务或者其他关联项目的图解方式.由于这种表现方式比单纯的文本更加接近人思考的空间性想象,所以越来越为大家用于创造性思维的过程中。思维导图的使用能有效地促进学生的知识建构.实验证明:思维导图为学生提供了思考框架,其知识表征方式及过程对知识的表达与理解,与数学教学有共通之处。思维导图将思维过程和知识结构用图的形式展示出来,可以更好地把握思维过程和知识的整体架构,以便于将新知识整合到已有的知识体系中去,方便于有意义学习的构成。在数学教学中引入思维导图,发挥思维导图在预习、复习、知识的整理巩固方面的作用,可以帮助学生构建完整有效的知识网络,提升他们的逻辑思维能力。思维导图在解决问题中的作用问题解决是由一定的情景引起的,按照一定的目标,应用各种认知活动、经过一系列的思维操作,使问题得以解决的过程。例如,证明几何题就是一个典型的问题解决的过程。心理学家们认为,在问题解决过程中,有时要经过若干个中间状态的转化才能到达目标状态,因而就会形成一种复杂的中间状态分布。认知心理学把解决问题过程中所经过的全部中间状态以及全部算子统称为“问题空间”或“问题图式”。人们发现“图式”在解决问题时是有效的,由于“思维导图”是一种有效的认知工具,它是用“

树状”结构清晰地表示知识之间的层次关系,应用于“问题解决”的过程中,有助于解题者“问题图式”建构的表征(“表征”是指信息在头脑中的储存形式)。解题者能否对问题做出合理的表征,关键在于是否形成了有关的“问题图式”,即形成解决问题的认知结构。当解题者面对“问题解决”复杂的中间状态分布和操作规则时,就会根据头脑中原有的“问题图式”,来建构“问题解决”的过程模式,直至完成问题解决为止。影响问题解决的因素有四个[4]:已掌握的知识、心智智能水平、动机和情绪、刺激呈现的模式。数学问题作为一种有待加工的信息系统,它主要由以下三种成分构成.

1.

条件信息.条件信息是指问题已知的和给定的东西,它可以是一些数据、一种关系或者某种状态.如题中给定的数据和运算符号、应用题中的已知数量及其相互之间的关系等都是数学问题给定的条件信息。2.

目标信息.目标在这里是指一个数学问题求解后所要达到的结果状态,即通常所说的要求什么.如问题“课外活动时,体育委员到保管室领球,按5个人一个篮球、8个人一个排球、10个人一个足球计算,一共要领17个球.全班共有多少人参加课外活动?”中的“全班共有多少人参加课外活动”就是问题给定的目标信息。3.

运算信息.运算在这里是指条件所允许采取的求解行动,即可以采取哪些操作方式把数学问题由问题状态转化成目标状态,它是问题求解的依据.如÷,可以利用除法商不变性质把除数是小数的除法转化成除数是整数的除法,然后按照除数是整数的除法法则进行计算,这就是问题给定的运算信息,没有这些信息就无法计算出结果。思维导图应用于数学问题解决的过程中,有助于学生“问题图式”建构的表征,有助于学生对数学问题条件信息、目标信息、运算信息的充分分析与利用.利用具有发散性思维的思维导图分析数学问题,有助于学生对已掌握知识的充分调动,从而影响问题的解决。思维导图在构建知识网络中的作用课后复习是巩固知识、提高运用知识解决问题的能力的重要环节。学生对运用思维导图这种方式进行复习总结都表现出一定的兴趣。在复习中,首先,学生独立对整章知识进行总结,根据自己的理解,理清数学概念、规律及其区别、联系,区分重点难点,画出思维导图。其次,教师批阅学生交上来的作品,把握学生对整个章节知识的掌握情况,同时对其在思维导图中体现的思维错误进行一定程度的修改。第三,在复习课堂上抽取部分典型的作品,先由大家讨论该思维导图的优劣,进行补充与深化,最后教师进行总结与提升,由于初中生的思维水平有限,教师的提高主要是将本章知识与已有知识进行联系,将新知识融入已有的知识体系中,形成知识网络,便于提取。各章、各单元间不是孤立的,而是互相联系的,让学生自己找出联系,把所有的思维导图编织成自己的知识网,整个过程也是其乐无穷的。学生学完直角三角形全等后,将直角三角形的知识与已有的三角形全等的知识相结合绘制的思维导图,可以加强对课程内容的整体认识,形成了一个清晰的知识框架。除了按章节复习之外,还可以按照知识分类复习,如函数知识,分一次函数、反比例函数、二次函数三个主要分支,每个主要分支再细分为函数概念、函数图像、函数性质及应用等,这样当思维导图完成时,学生也有了一个十分清晰的函数知识框架。四、思维导图改变了学生学习数学的方式

传统的数学学习,是对教师课堂内容的机械的记忆和模仿,很多学生忙于抄笔记和例题,没有时间真正地去思考。在这种情况下,教师很难改变自己是课堂主角的地位,久而久之,养成了学生记忆知识而不是思考知识的习惯,形成了思维惰性。采用思维导图的思考模式,用简单的图表来代替繁琐的书写,这样学生不仅能轻松跟上教师的节奏,充分地理解,而且解放的大脑还可以顺着教师的思路展开联想,学生在不知不觉中快乐地思考着。运用思维导图进行数学学习,可以在很大程度上改变传统的学习方式。让每个学生依据自己的水平与能力,踏实地思考解决问题的方法,运用思维导图记录自己的思维,同时也让每个学生看到了别人的思维过程。教师也可以对学生的思维进行有效的监控和引导,通过交流、对比与决策,最终寻求到更为有效的解决办法,使数学学习真正落实到实处。

在数学教学中运用思维导图,重要的一点是在思维导图的帮助下,通过教师引导、学生独立思考,逐渐培养学生运用知识解决问题的能力,达到提高数学能力、学会学习的目标。思维导图还是一个新事物,如何更好地运用它改善教师的教,促进学生的学,还有很长的路要走。

我对“思维导图”的几点认识我认为“思维导图”作为一种先进的思维方法,对于全面提高和发展一个人健全的思维品质具有非凡的价值,这种价值主要表现为以下几个方面:1、只要有一定学习基础和生活经验的人都可以学会运用思维导图,一个人一旦掌握了这种方法就可以在短时间内提高他的思维能力和思维水平,挖掘出自己的思维潜力。2、思维导图能够充分体现一个人的思维特点,因而具有非常强的个性化特征。由于制作者的知识结构、思维习惯、生活和工作经验的不同,其所制作的思维导图也非常不同,因此,思维导图有利于个性的张扬和充分体现个体思维的多样性。3、思维导图的建立有利于人们对其所思考的问题进行全方位和系统的描述与分析,非常有助于人们对所研究的问题进行深刻的和富有创造性的思考,从而有利于找到解决问题的关键因素或关键环节。4、思维导图有助于提高学习者的学习能力,有助于使一个学习者真正实现终身化学习和学会学习的目标。我学习和运用“思维导图”的几点不足1、没有系统地阅读和学习一本通俗易懂的入门书,对于思维导图缺乏全面、准确的认识。2、平时较易机械地模仿他人的思维导图,无论是在形式和思维方式方面。3、在制作思维导图的过程中,太拘泥于形式,制作不出具有个性和表现个体思想的思维导图。4、在与他人合作方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论