【附20套名校中考真题】2018年全国各地中考数学真题汇编:分式(含答案)-数学备课大师【全免费】_第1页
【附20套名校中考真题】2018年全国各地中考数学真题汇编:分式(含答案)-数学备课大师【全免费】_第2页
【附20套名校中考真题】2018年全国各地中考数学真题汇编:分式(含答案)-数学备课大师【全免费】_第3页
【附20套名校中考真题】2018年全国各地中考数学真题汇编:分式(含答案)-数学备课大师【全免费】_第4页
【附20套名校中考真题】2018年全国各地中考数学真题汇编:分式(含答案)-数学备课大师【全免费】_第5页
已阅读5页,还剩313页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2019年四川省资阳市中考数学试卷一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意。1.(3.00分)﹣的相反数是()A.3B.﹣3C.D.2.(3.00分)如图是由四个相同的小正方体堆成的物体,它的正视图是()A.B.C.D.3.(3.00分)下列运算正确的是()A.a2+a3=a5B.a2×a3=a6C.(a+b)2=a2+b2D.(a2)3=a64.(3.00分)下列图形具有两条对称轴的是()A.等边三角形B.平行四边形C.矩形D.正方形5.(3.00分)﹣0.00035用科学记数法表示为()4B.﹣3.5×104C.3.5×1043A.﹣3.5×10D.﹣3.5×106.(3.00分)某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是()A.87B.87.5C.87.6D.887.(3.00分)如图,ABCDEF为O的内接正六边形,AB=a,则图中阴影部分的面积是())a2C.2D.()a2A.B.(8.(3.00分)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米9.(3.00分)已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(,m),则不等式组mx2<kx+1<mx的解集为()A.xB.C.xD.010.(3.00分)已知二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:=1;ac+b+1=0;abc>0;ab+c>0.其中正确的个数是()A.4个B.3个C.2个D.1个二、填空题:(本大题共6个小题,每小题3分,共18分)11.(3.00分)函数y=的自变量x的取值范围是.12.(3.00分)已知a、b满足(a1)2+=0,则a+b=.13.(3.00分)一口袋中装有若干红色和白色两种小球,这些小球除颜色外没有任何区别,袋中小球已搅匀,蒙上眼睛从中取出一个白球的概率为.若袋中白球有4个,则红球的个数是.14.(3.00分)已知:如图,ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为.15.(3.00分)已知关于x的一元二次方程mx2+5x+m22m=0有一个根为0,则m=.16.(3.00分)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤。17.(7.00分)先化简,再求值:÷(a),其中a=1,b=1.18.(8.00分)某茶农要对1号、2号、3号、4号四个品种共500株茶树幼苗进行成活实验,从中选出成活率高的品种进行推广,通过实验得知,3号茶树幼苗成活率为89.6%,把实验数据绘制成图1和图2所示的两幅不完整的统计图.(1)实验所用的2号茶树幼苗的数量是株;(2)求出3号茶树幼苗的成活数,并补全统计图2;(3)该茶农要从这四种茶树中选择两个品种进行推广,请用列表或画树状图的方法求出1号品种被选中的概率.19.(8.00分)如图,在平面直角坐标系中,直线y1=2x2与双曲线y2=交于A、C两点,ABOA交x轴于点B,且OA=AB.(1)求双曲线的解析式;(2)求点C的坐标,并直接写出y1<y2时x的取值范围.20.(8.00分)为了美化市容市貌,政府决定将城区旁边一块162亩的荒地改建为湿地公园,规划公园分为绿化区和休闲区两部分.(1)若休闲区面积是绿化区面积的20%,求改建后的绿化区和休闲区各有多少亩?(2)经预算,绿化区的改建费用平均每亩35000元,休闲区的改建费用平均每亩25000元,政府计划投入资金不超过550万元,那么绿化区的面积最多可以达到多少亩?21.(9.00分)已知:如图,在ABC中,AB=AC,点P是底边BC上一点且满足PA=PB,O是PAB的外接圆,过点P作PDAB交AC于点D.(1)求证:PD是O的切线;(2)若BC=8,tanABC=,求O的半径.22.(9.00分)如图是小红在一次放风筝活动中某时段的示意图,她在A处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成30°角,线段AA1表示小红身高1.5米.(1)当风筝的水平距离AC=18米时,求此时风筝线AD的长度;(2)当她从点A跑动9米到达点B处时,风筝线与水平线构成45°角,此时风筝到达点E处,风筝的水平移动距离CF=10米,这一过程中风筝线的长度保持不变,求风筝原来的高度C1D.23.(11.00分)已知:如图,在RtABC中,ACB=90°,点M是斜边AB的中点,MDBC,且MD=CM,DEAB于点E,连结AD、CD.(1)求证:MED(2)求证:AMDBCA;CMD;(3)设MDE的面积为S1,四边形BCMD的面积为S2,当S2=S1时,求cosABC的值.24.(12.00分)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PEx轴交抛物线于点E,连结DE,请问是否存在点P使PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.2019年四川省资阳市中考数学试卷参考答案与试题解析一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意。1.(3.00分)﹣的相反数是()A.3B.﹣3C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是,故选:D.【点评】本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.2.(3.00分)如图是由四个相同的小正方体堆成的物体,它的正视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:从正面看可得从左往右2列正方形的个数依次为2,1,故选:A.【点评】本题考查了三视图的知识,正视图是从物体的正面看得到的视图.3.(3.00分)下列运算正确的是()A.a2+a3=a5B.a2×a3=a6C.(a+b)2=a2+b2D.(a2)3=a6【分析】根据合并同类项的法则,幂的乘方,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解.【解答】解:A、a2+a3=a2+a3,错误;B、a2×a3=a5,错误;C、(a+b)2=a2+2ab+b2,错误;D、(a2)3=a6,正确;故选:D.【点评】此题主要考查了整式的运算能力,对于相关的整式运算法则要求学生很熟练,才能正确求出结果.4.(3.00分)下列图形具有两条对称轴的是()A.等边三角形B.平行四边形C.矩形D.正方形【分析】根据轴对称及对称轴的定义,结合所给图形即可作出判断.【解答】解:A、等边三角形由3条对称轴,故本选项错误;B、平行四边形无对称轴,故本选项错误;C、矩形有2条对称轴,故本选项正确;D、正方形有4条对称轴,故本选项错误;故选:C.【点评】本题考查了轴对称图形及对称轴的定义,常见的轴对称图形有:等腰三角形,矩形,正方形,等腰梯形,圆等等.5.(3.00分)﹣0.00035用科学记数法表示为()4B.﹣3.5×104C.3.5×1043A.﹣3.5×10D.﹣3.5×10【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将数据0.00035用科学记数法表示为﹣3.5×104,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.(3.00分)某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是()A.87B.87.5C.87.6D.88【分析】将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分.【解答】解:小王的最后得分=90×+88×+83×=27+44+16.6=87.6(分),故选:C.【点评】本题主要考查了加权平均数,数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.7.(3.00分)如图,ABCDEF为O的内接正六边形,AB=a,则图中阴影部分的面积是())a2C.2D.()a2A.B.(【分析】利用圆的面积公式和三角形的面积公式求得圆的面积和正六边形的面积,阴影面积=(圆的面积﹣正六边形的面积)×,即可得出结果.【解答】解:正六边形的边长为a,O的半径为a,O的面积为π×a2=πa2,空白正六边形为六个边长为a的正三角形,每个三角形面积为×a×a×sin60°=a2,正六边形面积为a2,a2)×=(阴影面积为(πa2故选:B.)a2,【点评】本题主要考查了正多边形和圆的面积公式,注意到阴影面积=(圆的面积﹣正六边形的面积)×是解答此题的关键.8.(3.00分)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米【分析】利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,那么由折叠可得HF的长即为边AD的长.【解答】解:HEM=AEH,BEF=FEM,HEF=HEM+FEM=×180°=90°,同理可得:EHG=HGF=EFG=90°,四边形EFGH为矩形,AD=AH+HD=HM+MF=HF,HF===20,AD=20厘米.故选:C.【点评】此题主要考查了翻折变换的性质以及勾股定理等知识,得出四边形EFGH为矩形是解题关键.9.(3.00分)已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(,m),则不等式组mx2<kx+1<mx的解集为()A.xB.C.xD.0【分析】由mx2<(m2)x+1,即可得到x<;由(m2)x+1<mx,即可得到x>,进而得出不等式组mx2<kx+1<mx的解集为.【解答】解:把(,m)代入y1=kx+1,可得m=k+1,解得k=m2,y1=(m2)x+1,令y3=mx2,则当y3<y1时,mx2<(m2)x+1,解得x<;当kx+1<mx时,(m2)x+1<mx,解得x>,不等式组mx2<kx+1<mx的解集为故选:B.,【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.10.(3.00分)已知二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:=1;ac+b+1=0;abc>0;ab+c>0.其中正确的个数是()A.4个B.3个C.2个D.1个【分析】此题可根据二次函数的性质,结合其图象可知:a>0,﹣1<c<0,b<0,再对各结论进行判断.【解答】解:=1,抛物线顶点纵坐标为﹣1,正确;ac+b+1=0,设C(0,c),则OC=|c|,OA=OC=|c|,A(c,0)代入抛物线得ac2+bc+c=0,又c≠0,ac+b+1=0,故正确;abc>0,从图象中易知a>0,b<0,c<0,故正确;ab+c>0,当x=1时y=ab+c,由图象知(﹣1,ab+c)在第二象限,b+c>0,故正确.a故选:A.【点评】本题考查了二次函数的性质,重点是学会由函数图象得到函数的性质.二、填空题:(本大题共6个小题,每小题3分,共18分)11.(3.00分)函数y=的自变量x的取值范围是x≥1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x1≥0,解得x≥1.故答案为x≥1.【点评】本题考查函数自变量的取值范围,知识点为:二次根式的被开方数是非负数.12.(3.00分)已知a、b满足(a1)2+=0,则a+b=﹣1.【分析】直接利用非负数的性质得出a,b的值,进而得出答案.【解答】解:(a1)2+a=1,b=2,=0,a+b=1.故答案为:﹣1.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.13.(3.00分)一口袋中装有若干红色和白色两种小球,这些小球除颜色外没有任何区别,袋中小球已搅匀,蒙上眼睛从中取出一个白球的概率为.若袋中白球有4个,则红球的个数是16.【分析】根据题意和题目中的数据,由白球的数量和概率可以求得总的球数,从而可以求得红球的个数.【解答】解:由题意可得,红球的个数为:4÷故答案为:16.4=4×54=204=16,【点评】本题考查概率公式,解答本题的关键是明确题意,利用概率的知识解答.14.(3.00分)已知:如图,ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为9.【分析】设四边形BCED的面积为x,则SADE=12x,由题意知DEBC且DE=BC,从而得)2,据此建立关于x的方程,解之可得.=(【解答】解:设四边形BCED的面积为x,则SADE=12x,点D、E分别是边AB、AC的中点,DE是ABC的中位线,DEBC,且DE=BC,ADEABC,则=()2,即=,解得:x=9,即四边形BCED的面积为9,故答案为:9.【点评】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.15.(3.00分)已知关于x的一元二次方程mx2+5x+m22m=0有一个根为0,则m=2.【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【解答】解:关于x的一元二次方程mx2+5x+m22m=0有一个根为0,m22m=0且m≠0,解得,m=2.故答案是:2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.16.(3.00分)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是(0,21007).【分析】本题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.【解答】解:由已知,点A每次旋转转动45°,则转动一周需转动8次,每次转动点A到原点的距离变为转动前的倍2018=252×8+2点A2018的在y轴正半轴上,OA2018==21007故答案为:(0,21007)【点评】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤。17.(7.00分)先化简,再求值:÷(a),其中a=1,b=1.【分析】先根据分式混合运算顺序和运算法则化简原式,再将a、b的值代入计算可得.【解答】解:原式=÷=•=,当a=1,b=1时,原式====2+.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.18.(8.00分)某茶农要对1号、2号、3号、4号四个品种共500株茶树幼苗进行成活实验,从中选出成活率高的品种进行推广,通过实验得知,3号茶树幼苗成活率为89.6%,把实验数据绘制成图1和图2所示的两幅不完整的统计图.(1)实验所用的2号茶树幼苗的数量是100株;(2)求出3号茶树幼苗的成活数,并补全统计图2;(3)该茶农要从这四种茶树中选择两个品种进行推广,请用列表或画树状图的方法求出1号品种被选中的概率.【分析】(1)先根据百分比之和为1求得2号的百分比,再用总株数乘以所得百分比可得;(2)先用总株数乘以2号的百分比求得其数量,再用2号幼苗株数乘以其成活率即可得;(3)画树状图列出所有等可能结果,再从中找到1号品种被选中的结果数,利用概率公式计算可得.【解答】解:(1)2号幼苗所占百分比为130%+25%+25%)=20%,实验所用的2号茶树幼苗的数量是500×20%=100株,故答案为:100;(2)实验所用的2号茶树幼苗的数量是500×25%=125株,3号茶树幼苗的成活数为125×89.6%=112株,补全条形图如下:(3)画树状图如下:由树状图知共有12种等可能结果,其中抽到1号品种的有6种结果,所以1号品种被选中的概率为=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(8.00分)如图,在平面直角坐标系中,直线y1=2x2与双曲线y2=交于A、C两点,ABOA交x轴于点B,且OA=AB.(1)求双曲线的解析式;(2)求点C的坐标,并直接写出y1<y2时x的取值范围.【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=2x2,可得A的坐标,从而得双曲线的解析式;(2)一次函数和反比例函数解析式列方程组,解出可得点C的坐标,根据图象可得结论.【解答】解:(1)点A在直线y1=2x2上,设A(x,2x2),过A作ACOB于C,ABOA,且OA=AB,OC=BC,AC=OB=OC,x=2x2,x=2,A(2,2),k=2×2=4,;(2)C(﹣1,﹣4),由图象得:y1<y2时x的取值范围是x<1或0<x<2.,解得:,,【点评】此题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.20.(8.00分)为了美化市容市貌,政府决定将城区旁边一块162亩的荒地改建为湿地公园,规划公园分为绿化区和休闲区两部分.(1)若休闲区面积是绿化区面积的20%,求改建后的绿化区和休闲区各有多少亩?(2)经预算,绿化区的改建费用平均每亩35000元,休闲区的改建费用平均每亩25000元,政府计划投入资金不超过550万元,那么绿化区的面积最多可以达到多少亩?【分析】(1)设改建后的绿化区面积为x亩.根据总面积为162构建方程即可解决问题;(2)设绿化区的面积为m亩.根据投入资金不超过550万元,根据不等式即可解决问题;【解答】解:(1)设改建后的绿化区面积为x亩.由题意:x+20%•x=162,解得x=135,162135=27,答:改建后的绿化区面积为135亩和休闲区面积有27亩.(2)设绿化区的面积为m亩.由题意:35000m+25000(162m)≤0,解得m≤145,答:绿化区的面积最多可以达到145亩.【点评】本题考查一元一次方程的应用,一元一次不等式的应用等知识,解题的关键是学会设未知数,寻找等量关系,构建方程或不等式解决问题.21.(9.00分)已知:如图,在ABC中,AB=AC,点P是底边BC上一点且满足PA=PB,O是PAB的外接圆,过点P作PDAB交AC于点D.(1)求证:PD是O的切线;(2)若BC=8,tanABC=,求O的半径.【分析】(1)先根据圆的性质得:以PD是O的切线;,由垂径定理可得:OPAB,根据平行线可得:OPPD,所(2)如图2,作辅助线,构建直角三角形,根据三角函数设CG=,BG=2x,利用勾股定理计算x=,设AC=a,则AB=a,AG=a,在RtACG中,由勾股定理列方程可得a的值,同理设O的半径为r,同理列方程可得r的值.【解答】(1)证明:如图1,连接OP,PA=PB,,OPAB,PDAB,OPPD,PD是O的切线;(2)如图2,过C作CGBA,交BA的延长线于G,RtBCG中,tanABC=,设CG=,BG=2x,x,BC=BC=8,即x=8,x=,CG=x=,BG=2x=,设AC=a,则AB=a,AG=a,在RtACG中,由勾股定理得:AG2+CG2=AC2,,a=2,AB=2,BE=RtBEP中,同理可得:PE=O的半径为r,则OB=r,OE=r,,设,由勾股定理得:,r=,答:O的半径是.【点评】本题考查了切线的判定,等腰三角形的性质,直角三角形的性质,三角函数和勾股定理的计算,利用勾股定理列方程是解题的关键.22.(9.00分)如图是小红在一次放风筝活动中某时段的示意图,她在A处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成30°角,线段AA1表示小红身高1.5米.(1)当风筝的水平距离AC=18米时,求此时风筝线AD的长度;(2)当她从点A跑动9米到达点B处时,风筝线与水平线构成45°角,此时风筝到达点E处,风筝的水平移动距离CF=10米,这一过程中风筝线的长度保持不变,求风筝原来的高度C1D.【分析】(1)在RtACD中,由AD=可得答案;=18+(2)设AF=x米,则BF=AB+AF=9+x,在RtBEF中求得AD=BE=x,由cosCAD=可建立关于x的方程,解之求得x的值,即可得出AD的长,继而根据CD=ADsinCAD求得CD从而得出答案.【解答】解:(1)在RtACD中,cosCAD=,AC=18、CAD=30°,AD====12(米),答:此时风筝线AD的长度为12米;(2)设AF=x米,则BF=AB+AF=9+x(米),在RtBEF中,BE===18+x(米),由题意知AD=BE=18+x(米),CF=10,AC=AF+CF=10+x,由cosCAD=解得:x=3可得=,+2,则AD=18+(3+2)=24+3,CD=ADsinCAD=(24+3)×=则C1D=CD+C1C=答:风筝原来的高度C1D为,+=,米.【点评】本题主要考查解直角三角形的应用,解题的关键是掌握三角函数的定义及根据题意找到两直角三角形间的关联.23.(11.00分)已知:如图,在RtABC中,ACB=90°,点M是斜边AB的中点,MDBC,且MD=CM,DEAB于点E,连结AD、CD.(1)求证:MEDBCA;(2)求证:AMDCMD;(3)设MDE的面积为S1,四边形BCMD的面积为S2,当S2=S1时,求cosABC的值.【分析】(1)易证DME=CBA,ACB=MED=90°,从而可证明MEDBCA;(2)由ACB=90°,点M是斜边AB的中点,可知MB=MC=AM,从而可证明AMD=CMD,从而可利用全等三角形的判定证明AMDCMD;(3)易证MD=2AB,由(1)可知:MEDACB=2S1,从而可求出SEBD=S2BCA,所以==,所以SMCB==,设SSS1=S1,由于=,从而可知MCBME=5x,EB=2x,从而可求出AB=14x,BC=【解答】解:(1)MDBC,DME=CBA,,最后根据锐角三角函数的定义即可求出答案.ACB=MED=90°,MEDBCA,(2)ACB=90°,点M是斜边AB的中点,MB=MC=AM,MCB=MBC,DMB=MBC,MCB=DMB=MBC,AMD=180°CMD=180°DMB,MCBMBC+DMB=180°MBCAMD=CMD,在AMD与CMD中,AMDCMD(SAS)(3)MD=CM,AM=MC=MD=MB,MD=2AB,由(1)可知:MEDBCA,==,SACB=4S1,CM是ACB的中线,SSMCB=SACB=2S1,EBD=S2SMCBS1=S1,=,=,=,设ME=5x,EB=2x,MB=7x,AB=2MB=14x,==,BC=,cosABC===【点评】本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,需要学生灵活运用所学知识.24.(12.00分)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PEx轴交抛物线于点E,连结DE,请问是否存在点P使PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【分析】(1)待定系数法求解可得;(2)作PMOB与点M,交AB于点N,作AGPM,先求出直线AB解析式为y=x+6,设P(t,﹣t2+2t+6),则N(t,﹣t+6),由SPAB=SPAN+SPBN=PN•AG+PN•BM=PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PHOB知DHAO,据此由OA=OB=6得BDH=BAO=45°,结合DPE=90°知若PDE为等腰直角三角形,则EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【解答】解:(1)抛物线过点B(6,0)、C(﹣2,0),设抛物线解析式为y=a(x6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=所以抛物线解析式为y=(2)如图1,过点P作PMOB与点M,交AB于点N,作AGPM于点G,,(x6)(x+2)=x2+2x+6;设直线AB解析式为y=kx+b,将点A(0,6)、B(6,0)代入,得:,解得:,则直线AB解析式为y=x+6,设P(t,﹣t2+2t+6)其中0<t<6,则N(t,﹣t+6),PN=PMMN=t2+2t+6PBNt+6)=t2+2t+6+t6=t2+3t,SPAB=SPAN+S=PN•AG+PN•BM=PN•(AG+BM)=PN•OB=×(﹣t2+3t)×6==t2+9t(t3)2+,当t=3时,PAB的面积有最大值;(3)如图2,PHOB于H,DHB=AOB=90°,DHAO,OA=OB=6,BDH=BAO=45°,PEx轴、PDx轴,DPE=90°,若PDE为等腰直角三角形,则EDP=45°,EDP与BDH互为对顶角,即点E与点A重合,则当y=6时,﹣x2+2x+6=6,解得:x=0(舍)或x=4,即点P(4,6).【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等知识点.2019年中考数学真题汇编分式一、选择题1.(2019山东滨州)下列运算:①a2•a3=a6,(a3)2=a6,a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A.1B.2C.3D.4【答案】B2.(2019天津)计算的结果为()A.1B.3C.D.【答案】C3.(2019甘肃凉州)若分式A.2或-2的值为0,则的值是()B.2C.-2D.0【答案】A4.函数中,自变量x的取值范围是()。B.x<1A.x≠0C.x>1D.x≠1D.-5D.0【答案】D5.若分式A.2的值为0,则的值是()B.0C.-2【答案】A6.若分式A.3的值为0,则x的值是()B.C.3或【答案】A二、填空题7.要使分式有意义,则的取值范围是________.【答案】28.要使分式有意义,x的取值应满足________。【答案】x≠19.使得代数式有意义的的取值范围是________.的值为0,则x的值为________.【答案】10.若分式【答案】-3三、解答题11.先化简,再求值:,其中.【答案】原式==,当时,原式=。12.计算:(1)(2)【答案】(1)解:原式=(2)解:原式====13.先化简,再求值:,其中.【答案】解:原式x=2,=.14.先化简,再求值:(【答案】解:原式=-)÷,其中x满足x2-2x-2=0.,==,,x2-2x-2=0,x2=2x+2,=.15.计算:.【答案】解:原式==.16.先化简,再求值,其中是不等式组的整数解.【答案】解:原式=•==,不等式组解得:3<x<5,整数解为x=4,当x=4时,原式=..17.先化简,再求值:(xy2+x2y)×【答案】解:原式=xy(x+y)•,其中x=π0)1,y=2sin45°.=xy,当x=1原式=2=1,y=2=时,118.计算.【答案】解:19.已知(1)化简T。(2)若正方形ABCD的边长为a,且它的面积为9,求T的值。【答案】(1)(2)解:正方形ABCD的边长为a,且它的面积为9,a==3T==南京市2019年初中学业水平考试数学一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置上)1.2019年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是A.B.C.D.2.计算A.的结果是C.B.D.3.面积为4的正方形的边长是A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根4.实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是5.下列整数中,与A.4B.5最接近的是C.6D.76.如图,A′B′C′是由ABC经过平移得到的,A′B′C′还可以看作是ABC经过怎样的图形变化得到?下列结论:1次旋转;1次旋转和1次轴对称;2次旋转;2次轴对称.其中所有正确结论的序号是A.B.C.D.二、填空题(本大题共10小题,每小题2分,本大题共20分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)7.﹣2的相反数是;的倒数是.8.计算的结果是.9.分解因式10.已知的结果是.是关于x的方程的一个根,则m=.11.结合下图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:,ab.12.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.13.为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:视力人数4.7以下4.7984.8804.9934.9以上102127根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是.14.如图,PA、PB是OO的切线,A、B为切点,点C、D在O上.若P=102°,则A+C=°.15.如图,在ABC中,BC的垂直平分线MN交AB于点D,CD平分ACB.若AD=2,BD=3,则AC的长为.16.在ABC中,AB=4,C=60°,A>B,则BC的长的取值范围是.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算.18.(7分)解方程.19.(7分)如图,D是ABC的边AB的中点,DEBC,CEAB,AC与DE相交于点F.求证CEF.ADF20.(8分)下图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据上图提供的信息,请再写出两个不同类型的结论.21.(8分)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是.22.(7分)如图,O的弦AB、CD的延长线相交于点P,且AB=CD.求证PA=PC.23.(8分)已知一次函数(1)当k=2时,若(2)当x<1时,(k为常数,k≠0)和,求x的取值范围;.结合图像,直接写出k的取值范围..>>24.(8分)如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51)25.(8分)某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用元,扩充后广场的长和宽应分别是多少米?26.(9分)如图,在RtABC中,C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.(1)证明小明所作的四边形DEFG是菱形;(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.27.(11分)【概念认知】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(,)和B(,),用以下方式定义两点间距离:d(A,B)=+.【数学理解】(1)①已知点A(2,1),则d(O,A)=;函数(0≤x≤2)的图像如图①所示,B是图像上一点,d(O,B)=3,则点B的坐标是.(2)函数(x>0)的图像如图②所示,求证:该函数的图像上不存在点C,使d(O,C)=3.(x≥0)的图像如图所示,D是图像上一点,求d(O,D)的最小值及对应的点D(3)函数的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由亚)浙江省2019年初中学业水平考试(金华卷/丽水卷)数学试题卷考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用开卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应位置上.3.请用黑色字迹钢笔或签字笔在答题纸上先填写姓名和准考证号.4.作图时,可先使用2B铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑.5.本次考试不得使用计算器.卷Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.ABDCE1234第3题图一、选择题(本题有10小题,每小题3分,共30分)1.在0,1,A.0,-1四个数中,最小的数是(▲)C.D.-1B.12.计算结果正确的是(▲)A.B.C.D.3.如图,B的同位角可以是(▲)A.1B.2C.3D.4主视图左视图俯视图yPx单位:mm4030101650O红黄蓝第5题图第6题图第7题图4.若分式的值为0,则x的值是(▲)C.3或D.0A.3B.5.一个几何体的三视图如图所示,该几何体是(▲)A.直三棱柱B.长方体C.圆锥D.立方体6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是(▲)A.B.C.D.7.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是(▲)A.(5,30)B.(8,10)C.(9,10)D.(10,10)8.如图,两根竹竿AB和AD斜靠在墙CE上,量得ABC=α,ADC=β,则竹竿AB与AD的长度之比为(▲)O120y(元)655030x(h)255055A方式B方式C方式BADCEFαβA.B.C.D.ABDCE第8题图第9题图第10题图9.如图,将ABC绕点C顺时针旋转90°得到EDC.若点A,D,E在同一条直线上,ACB=20°,则ADC的度数是(▲)A.55°B.60°C.65°D.70°10.某通讯公司就上宽带推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上时间x(h)的函数关系如图所示,则下列判断错误的是(▲)A.每月上时间不足25h时,选择A方式最省钱B.每月上费用为60元时,B方式可上的时间比A方式多C.每月上时间为35h时,选择B方式最省钱D.每月上时间超过70h时,选择C方式最省钱卷Ⅱ说明:本卷共有2大题,14小题,共90分.请用黑色字迹钢笔或签字笔将答案写在答题纸的相应位置上.二、填空题(本题有6小题,每小题4分,共24分)11.化简的结果是▲.2013~2017年国内生产总值增长速度统计图2013年2014年2015年2016年6.5%7%8%6%选自国家统计局2018年2月统计公报7.5%7.3%6.9%6.7%6.9%2017年7.8%8.5%ADBCEFG①12.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC辅助线),你添加的条件是▲.BEC(不添加其他字母及ABDCEF图1图2第12题图第13题图第15题图13.如图是我国2019-2020年国内生产总值增长速度统计图,则这5年增长速度的众数是▲.14.对于两个非零实数x,y,定义一种新的运算:.若,则的值是▲.15.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是▲.第16题图D1图1图2图3B1ACDBC1ACBDBCAD1D2DB1B2C1C216.如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为▲cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为▲cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(本题6分)计算:+-4sin45°+.18.(本题6分)解不等式组:19.(本题6分)206090120各种支付方式中不同年龄段人数条形统计图20~40岁41~60岁12080307515030A支付方式人数100BCD各种支付方式的扇形统计图A支付宝支付B微信支付C现金支付D其他C15%A40%BD10%为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:第19题图(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.(本题8分)如图,在6×6的格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各格中画出顶点在格点上,面积为6,且符合相应条件的图形.图1:以点A为顶点的三角形图3:以点A为对角线交点的平行四边形图2:以点A为顶点的平行四边形AAA21.(本题8分)OABDCE如图,在RtABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知CAD=B.(1)求证:AD是O的切线.(2)若BC=8,tanB=第21题图,求O的半径.22.(本题10分)如图,抛物线(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.DCEBAOyx第22题图(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.(本题10分)如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BDy轴,且BDAC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.PyxOABCD第23题图(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.(本题12分)ABDCFGE第24题图在RtABC中,ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.第23题备用图ByxO23.答题纸上给出m=4,n=10时的图形2019年沈阳市数学中考试题一、选择题(下列各题的备选答案中,只有一个答案是正确的每小题2分,共20分)1.下列各数中是有理数的是A.B.0C.D.2.辽宁男篮冠后,从4月21日至24日各类媒体关于“辽篮CBA夺冠”的相关文章达到81000篇,将数据81000用科学记数法表示为A.0.81×104B.0.81×105C.8.1×104D.8.1×1053左下图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是4.在平面直角坐标系中,点B的坐标是(4,-1),点A与点B关于x轴对称,则点A的坐标是A.(4,1)B.(-1,4)C.(-4,-1)D.(-1,-4)5.下列运算错误的是A.(m2)3=m6B.a10÷a9=aC.x3·x5=x8D.a4+a3=a76.如图,ABCD,EFGH,1=60°,则2补角的度数是A.60°B.100°C.110°D.120°7.下列事件中,是必然事件的是A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨8.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<09.点A(-3,2)在反比例函数y=(kO)的图象上,则k的值是A.-6B.C.-1D.610.如图,正方形ABCD内接于O,AB=2,则AB的长是A.B.C.D.二、填空题(每小题3分,共18分)11.因式分解:3x3-12x=.12.一组数3,4,7,4,3,4,5,6,5的众数是.13.化简:=.14.不等式组的解集是.15.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱篱笆的厚度忽略不计),当AB=m时,矩形土地ABCD面积最大.16.如图,△ABC是等边三角形,AB=CH,当BHD=60°AHC=90°时,DH=,点D是边BC上一点,点H是线段AD上一点,连接BH、.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.计算18.如图,在菱形ABCD中,对角线AC与BD交于点O,过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证四边形OCED是矩形;(2)若CE=1,DE=2,则菱形ABCD的面积是.19.经过校园某路口的行人,可能左转,也可能直行或右转假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.四、(每小题8分,共16分)20.九年三班的小雨同学想了解本校九年级学生对哪门课感兴趣,随机抽取了部分九年级学生进行调查(每名学生必选且只能选择一门课程),将获得的数据整理绘制成如下两幅不完整的统计图:学生感兴趣的课程情况条形统计图学生感兴的课程情况扇形统计图根据统计图提供的信息,解答下列问题(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据以上信息直接在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.21,某公司今年1月份的生产成本是400万元,由于改进生产技术,生产成本逐月下降,3月份的生产成本是361万元、假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下下降率;(2)请你预测4月份该公司的生产成本.五、(本题10分)22.如图,BE是O的直径,点A和点D是O上的两点,过点A作O的切线交BE延长线于点C.(1)若ADE=25°,求C的度数(2)若AB=AC,CE=2,求O半径的长.六、(本题10分)23.如图,在平面直角坐标系中,点F的坐标为(0,10),点E的坐标为(20,0),直线l1经过点F和点E,直线11与直线12:y=x相交于点P(1)求直线的表达式和点P的坐标;(2)矩形ABCD的边AB在y轴轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x轴平行,已知矩形ABCD以每秒>0),个单位的速度匀速移动动(点A移动到点E时停止移动),设移动时间为t秒(t①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线11或12上,请直接写出此时t的值;若矩形ABCD在移动的过程中,直线CD交直线11于点N,交直线于点M,当△PMN的面积等于18时,请直接写出此时t的值.七、(本题12分)24.已知△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°,点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM.射线AGBC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当ACB=90°时,①求证:△BCMCAN;求BDE的度数;(2)当ACB=,其它条件不变时,BDE的度数是(用含的代数式表示)(3)若△ABC是等边三角形,AB=直接写出线段CF的长,点N是BC边上的三等分点,直线ED与直线BC交于点F,请八、(本题12分)25.如图,在平而直角坐标系中,抛抛物线C1y=ax2+bx-1经过点A(-2,1)和点B(-1,-1),抛抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点,连接N,在平面内有一点Q,连连接Q和QN.当O=1且NO=BNP时,请直接写出点Q的坐标参考答案一、选择题(每小题2分,共20分)1.B2.C3.D4.A5.D6.D7.B8.C9.A10.A二、填空题(每小题3分,共18分)11.3x(x+2)(x-2)12.413.14.15.15016.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.18.证明:(1)四边形ABCD为菱形,ACBD,COD=90°,CEOD,DEOC,四边形OCED是平行四边形,COD=90º,平行四边形OCED是矩形(2)42019年台湾省中考数学试卷一、选择题(本大题共26小题,共78.0分)1.算式--(-)之值为何?()A.B.C.D.2.某城市分为南、北两区,如图为105年到107年该城市两区的人口数量长条图.根据图判断该城市的总人口数量从105年到107年的变化情形为下列何者?()A.逐年增加B.逐年灭少C.先增加,再减少D.先减少,再增加3.计算(2x-3)(3x+4)的结果,与下列哪一个式子相同?()A.B.C.D.4.图1的直角柱由2个正三角形底面和3个矩形侧面组成,其中正三角形面积为a,矩形面积为b.若将4个图1的直角柱紧密堆叠成图2的直角柱,则图2中直角柱的表面积为何?()A.B.C.D.5.若,,则a+b之值为何?()=2=3A.13B.17C.24D.406.民国106年8月15日,大潭发电厂因跳电导致供电短少约430万瓩,造成全台湾多处地方停电.已知1瓩等于1千瓦,求430万瓩等于多少瓦?()A.B.C.D.7.如图的坐标平面上有原点O与A、B、C、D四点.若有一直线L通过点(-3,4)且与y轴垂直,则L也会通过下列哪一点?()A.AB.BC.CD.D8.若多项式5x2+17x-12可因式分解成(x+a)(bx+c),其中a、b、c均为整数,则a+c之值为何?()A.1B.7C.11D.139.公园内有一矩形步道,其地面使用相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成.如图表示此步道的地砖排列方式,其中正方形地砖为连续排列且总共有40个.求步道上总共使用多少个三角形地砖?()A.84B.86C.160D.16210.数线上有O、A、B、C四点,各点位置与各点所表示的数如图所示.若数线上有一点D,D点所表示的数为d,且|d-5|=|d-c|,则关于D点的位置,下列叙述何者正确?()A.在A的左边B.介于A、C之间C.介于C、O之间D.介于O、B之间11.如图,将一长方形纸片沿着虚线剪成两个全等的梯形纸片.根据图中标示长度与角度,求梯形纸片中较短的底边长度为何?()A.4B.5C.6D.712.阿慧在店内购买两种蛋糕当伴手礼,如图为蛋糕的价目表.已知阿慧购买10盒蛋糕,花费的金额不超过2500元.若他将蛋糕分给75位同事,每人至少能拿到一个蛋糕,则阿慧花多少元购买蛋糕?()A.2150B.2250C.2300D.245013.如图,ABC中,D点在BC上,将D点分别以AB、AC为对称轴,画出对称点E、F,并连接AE、AF.根据图中标示的角度,求EAF的度数为何?()A.113B.124C.129D.13414.箱子内装有53颗白球及2颗红球,小芬打算从箱子内抽球,以毎次抽出一球后将球再放回的方式抽53次球.若箱子内每颗球被抽到的机会相等,且前52次中抽到白球51次及红球1次,则第53次抽球时,小芬抽到红球的机率为何?()A.B.C.D.15.如图,ABC中,AC=BC<AB.若1、2分别为ABC、ACB的外角,则下列角度关系何者正确()A.B.C.D.16.小涵与阿嘉一起去咖啡店购买同款咖啡豆,咖啡豆每公克的价钱固定,购买时自备容器则结帐金额再减5元.若小涵购买咖啡豆250公克且自备容器,需支付295元;阿嘉购买咖啡豆x公克但没有自备容器,需支付y元,则y与x的关系式为下列何者?()A.B.C.D.17.如图,将一张面积为14的大三角形纸片沿着虚线剪成三张小三角形纸片与一张平行四边形纸片.根据图中标示的长度,求平行四边形纸片的面积为何?()A.B.C.D.18.图1的摩天轮上以等间隔的方式设置36个车厢,车厢依顺时针方向分别编号为1号到36号,且摩天轮运行时以逆时针方向等速旋转,旋转一圈花费30分钟.若图2表示21号车厢运行到最高点的情形,则此时经过多少分钟後,9号车厢才会运行到最高点?()A.10B.20C.D.19.如图,直角三角形ABC的内切圆分别与AB、BC相切于D点、E点,根据图中标示的长度与角度,求AD的长度为何?()A.B.C.D.20.某旅行团到森林游乐区参观,如表为两种参观方式与所需的缆车费用.已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘缆车,回程有10人搭乘缆车.若他们缆车费用的总花费为4100元,则此旅行团共有多少人?()参观方式去程及回程均搭乘缆车单程搭乘缆车,单程步行缆车费用300元200元A.16B.19C.22D.2521.小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x杯饮料,y份沙拉,则他们点了几份A餐?()A.B.C.D.22.若正整数a和420的最大公因数为35,则下列叙何者正确?()A.20可能是a的因数,25可能是a的因数B.20可能是a的因数,25不可能是a的因数C.20不可能是a的因数,25可能是a的因数D.20不可能是a的因数,25不可能是a的因数23.如图,有一三角形ABC的顶点B、C皆在直线L上,且其内心为I.今固定C点,将此三角形依顺时针方向旋转,使得新三角形A'B'C的顶点A′落在L上,且其内心为I′.若A<B<C,则下列叙述何者正确?()#JYA.IC和C.IC和平行,不平行,和L平行B.IC和和L平行D.IC和平行,不平行,和L不平行和L不平行24.如图表示A、B、C、D四点在O上的位置,其中=180°,且=,=.若阿超在上取一点P,在上取一点Q,使得APQ=130°,则下列叙述何者正确?()A.Q点在B.Q点在C.Q点在D.Q点在上,且上,且上,且上,且25.如图的ABC中,AB>AC>BC,且D为BC上一点.今打算在AB上找一点P,在AC上找一点Q,使得APQ与PDQ全等,以下是甲、乙两人的作法:(甲)连接AD,作AD的中垂线分别交AB、AC于P点、Q点,则P、Q两点即为所求(乙)过D作与AC平行的直线交AB于P点,过D作与AB平行的直线交AC于Q点,则P、Q两点即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确26.如图,坐标平面上有一顶点为A的抛物线,此抛物线与方程式y=2的图形交于B、C两点,ABC为正三角形.若A点坐标为(-3,0),则此抛物线与y轴的交点坐标为何?()A.B.C.D.二、解答题(本大题共2小题,共16.0分)27.市面上贩售的防晒产品标有防晒指数SPF,而其对抗紫外线的防护率算法为:防护率=×100%,其中SPF≥1.请回答下列问题:(1)厂商宣称开发出防护率90%的产品,请问该产品的SPF应标示为多少?(2)某防晒产品文宣内容如图所示.请根据SPF与防护率的转换公式,判断此文宣内容是否合理,并详细解释或完整写出你的理由.28.在公园有两座垂直于水平地面且高度不一的图柱,两座圆柱后面有一堵与地面互相垂直的墙,且圆柱与墙的距离皆为120公分.敏敏观察到高度90公分矮圆柱的影子落在地面上,其影长为60公分;而高圆柱的部分影子落在墙上,如图所示.已知落在地面上的影子皆与墙面互相重直,并视太阳光为平行光,在不计圆柱厚度与影子宽度的情况下,请回答下列问题:(1)若敏敏的身高为150公分,且此刻她的影子完全落在地面上,则影长为多少公分?(2)若同一时间量得高圆柱落在墙上的影长为150公分,则高图柱的高度为多少公分?请详细解释或完整写出你的解题过程,并求出答案.答案和解析1.【答案】A【解析】解:原式=-+=-+=故选:A.=-=-,根据有理数的加减法法则计算即可.本题主要考查了有理数的加减法.有理数的减法法则:减去一个数,等于加上这个数的相反数.2.【答案】A【解析】解:由图中数据可知:105年该城市的总人口数量<106年该城市的总人口数量<107年该城市的总人口数量,该城市的总人口数量从105年到107年逐年增加,故选:A.根据图中数据计算可直接得105年该城市的总人口数量<106年该城市的总人口数量<107年该城市的总人口数量,据此作答.本题考查条形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.3.【答案】D【解析】解:由多项式乘法运算法则得(2x-3)(3x+4)=6x2+8x-9x-12=6x2-x-12.故选:D.由多项式乘法运算法则:两多项式相乘时,用一个多项式的各项去乘另一个多项式的每一项,再把所得的积相加,合并同类项后所得的式子就是它们的积.本题考查多项式乘法运算法则,牢记法则,不要漏项是解答本题的关键.4.【答案】C【解析】解:正三角形面积为a,矩形面积为b,图2中直角柱的表面积=2×4a+6b=8a+6b,故选:C.根据已知条件即可得到结论.本题考查了等边三角形的性质,矩形的性质,列代数式,正确的识别图形是解题的关键.5.【答案】B【解析】解:==2,a=11,,b=6,==3a+b=11+6=17.故选:B.根据二次根式的定义求出a、b的值,代入求解即可.本题主要考查了二次根式的定义,熟练掌握定义是解答本题的关键.6.【答案】C【解析】解:430万瓩=0瓩,1瓩等于1千瓦,0瓩=0千瓦=4.3×106千瓦=4.3×109瓦;故选:C.根据题意将430万瓩化为4.3×109瓦即可解题;本题考查科学记数法;能够将单位进行准确的换算,将大数用科学记数法表示出来是解题的关键.7.【答案】D【解析】解:如图所示:有一直线L通过点(-3,4)且与y轴垂直,故L也会通过D点.故选:D.直接利用点的坐标,正确结合坐标系分析即可.此题主要考查了点的坐标,正确结合平面直角坐标系分析是解题关键.8.【答案】A【解析】解:利用十字交乘法将5x2+17x-12因式分解,可得:5x2+17x-12=(x+4)(5x-3).a=4,c=-3,a+c=4-3=1.故选:A.首先利用十字交乘法将5x2+17x-12因式分解,继而求得a,c的值.此题考查了十字相乘法分解因式的知识.注意ax2+bx+c(a≠0)型的式子的因式分解:这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2).9.【答案】A【解析】解:3+40×2+1=84.答:步道上总共使用84个三角形地砖.故选:A.中间一个正方形对应两个等腰直角三角形,从而得到三角形的个数为3+40×2+1.本题考查了等腰直角三角形:两条直角边相等的直角三角形叫做等腰直角三角形.也考查了规律型问题的解决方法,探寻规律要认真观察、仔细思考,善用联想来解决这类问题.10.【答案】D【解析】解:c<0,b=5,|c|<5,|d-5|=|d-c|,BD=CD,D点介于O、B之间,故选:D.根据O、A、B、C四点在数轴上的位置和绝对值的定义即可得到结论.本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.11.【答案】C【解析】解:过F作FQAD于Q,则FQE=90°,四边形ABCD是长方形,A=B=90°,AB=DC=8,ADBC,四边形ABFQ是矩形,AB=FQ=DC=8,ADBC,QEF=BFE=45°,EQ=FQ=8,AE=CF=×(20-8)=6,故选:C.根据矩形的性质得出A=B=90°,AB=DC=8,ADBC,根据矩形的判定得出四边形ABFQ是矩形,求出AB=FQ=DC=8,求出EQ=FQ=8,即可得出答案.本题考查了矩形的性质和判定,能灵活运用定理进行推理是解此题的关键.12.【答案】D【解析】解:设阿慧购买x盒桂圆蛋糕,则购买(10-x)盒金爽蛋糕,依题意有,解得2≤x≤3,x是整数,x=3,350×3+200×(10-3)=1050+1400=2450(元).答:阿慧花2450元购买蛋糕.故选:D.可设阿慧购买x盒桂圆蛋糕,则购买(10-x)盒金爽蛋糕,根据不等关系:购买10盒蛋糕,花费的金额不超过2500元;蛋糕的个数大于等于75个,列出不等式组求解即可.本题考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论