选修系列数列与差分_第1页
选修系列数列与差分_第2页
选修系列数列与差分_第3页
选修系列数列与差分_第4页
选修系列数列与差分_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.引言数列是描述客观世界的重要数学模型差分是描述数列变化的主要工具Ⅰ客观世界许多变量本身就是离散的:如酵母细胞的分裂,股市的开盘或收盘价的按日记录等.Ⅱ现实世界中存在着大量的连续函数关系难以用解析式表示:如河流水位的高低作为时间的函数等.Ⅲ函数关系尽管能用解析式表示,但其解析式比较复杂:如捕食与被捕食种群数的变化、接触性传染病的传播等.

在不妨碍研究结果有效性的前提下,为了方便,人们也愿意把对连续函数的研究转化为对数列的研究.而计算机技术的发展,更为数列的研究提供了方便,使数列模型的应用也日趋广泛.第1页/共60页第一页,共61页。1.2.差分是描述数列变化的主要工具第2页/共60页第二页,共61页。差分与数列通项的关系1:对数列{an}={2,2,2,2,2},其一阶差分Δan={0,0,0,0}.一般地,常数列的一阶差分为各项是零的常数列(注意:每施行一次差分运算,所得新数列的总项数都会减少1)关系2:对数列{an}={3n-5}={-2,1,4,7,10,13,16,19},其一阶差分Δan={3,3,3,3,3,3,3}为常数列,其通项an=3n-5是一个线性函数.一般地,当数列{an}是由一个线性函数定义的等差数列时,其一阶差分为常数列.第3页/共60页第三页,共61页。关系3:对数列{an}={n2-3n+5}={3,3,5,9,15,23},其一阶差分Δan={0,2,4,6,8},其二阶差分Δ2an={2,2,2,2}为常数列,其通项an=n2-3n+5是一个二次函数.一般地,当数列{an}是由一个二次函数定义时,其二阶差分为常数列.关系4:对数列{an}={3n}={3,9,27,81,243,729,2187},其一阶差分Δan={6,18,54,162,486,1458},二阶差分Δ2an={12,36,108,324,972}都不是常数列,而都是公比为3的等比数列.一般地,当数列{an}是由一个指数函数定义时,其一阶、二阶差分都是以该指数函数的底数为公比的等比数列.第4页/共60页第四页,共61页。差分对数列的描述①一阶差分对数列增减的描述第5页/共60页第五页,共61页。②一阶差分对数列极值的描述第6页/共60页第六页,共61页。③二阶差分对数列图形凸凹的描述第7页/共60页第七页,共61页。第8页/共60页第八页,共61页。例2.构造数列{n2-4n+3}前7个值a1~a7的差分表,并据该表确定数列在何处增加、何处减少、何处达到相对极大或极小、图像上凸或下凸.第9页/共60页第九页,共61页。解:构造差分表如下.据差分表:因Δa1<0,知数列在n=1处为减;Δa2,Δa3,…,Δa6>0,数列在n=2,3,…,6处为增;Δa1<0,Δa2>0,故在n=2处达到相对极小;对这7项而言,数列无相对极大;因为二阶差分Δ2an>0,故数列图像是下凸的.n1234567an0-10381524△an-113579△2an22222第10页/共60页第十页,共61页。2.差分方程有关的基本概念第11页/共60页第十一页,共61页。第12页/共60页第十二页,共61页。第13页/共60页第十三页,共61页。第14页/共60页第十四页,共61页。第15页/共60页第十五页,共61页。3.差分方程(一阶)的解、通解与特解差分方程的解是一个数列.当把它代入差分方程时,得到一个恒等式,它满足任何一个初始值.差分方程的通解差分方程的特解

例如:用数列{xn}={(1.05)nc}(c为任意常数)代入差分方程xn+1=xn+0.05xn,有:(1.05)n+1c=(1.05)nc+0.05(1.05)nc,这是一个恒等式.称数列{xn}={(1.05)nc}是差分方程xn+1=xn+0.05xn的解.

我们注意到,上式解中含有一个常数c,并且方程是一阶的.一般地,如果差分方程的解中含有与方程的阶数相同个数的相互独立的任意常数,就称它为差分方程的通解.按此定义,xn=(1,05)nc也是一阶差分方程xn+1=xn+0.05xn的通解.

对上式通解xn=(1.05)nc,若给定初值x0=1000,代入通解得:1000=(1.05)0c,求得常数c=1000,称xn=(1.05)n×1000为方程相应于初值x0=1000的特解.注意:这样求出的特解是用解析式表示的.

显然,相应于不同的初值,方程有不同的特解,而求特解只要将给定初始值代入通解求出待定常数即可.第16页/共60页第十六页,共61页。迭代法对差分方程(组)来说,迭代法是用于求特解的重要方法.重点:对一阶齐次线性方程组,在给定初始值的条件下,可以利用某种迭代程序在计算机上方便地求得它的数值解序列,并根据数值解序列掌握解的变化趋势.此点在新课标该专题中作重点要求.

用方程含未知数列项相同个数的初始值代入方程(组)求得第一个(组)数值,将所得第一个(组)数值又代入方程(组)求得第二个(组)数值,……,将此过程不断重复,求得在该初始条件下满足方程(组)的特解.第17页/共60页第十七页,共61页。例3:第18页/共60页第十八页,共61页。例4:第19页/共60页第十九页,共61页。例5:第20页/共60页第二十页,共61页。第21页/共60页第二十一页,共61页。3.1.求一阶齐次差分方程xn+1=kxn(3)的通解第22页/共60页第二十二页,共61页。3.2.探索一阶非齐次差分方程xn+1=kxn+b通解的结构第23页/共60页第二十三页,共61页。3.3.求一阶非齐次差分方程(1)的通解第24页/共60页第二十四页,共61页。第25页/共60页第二十五页,共61页。第26页/共60页第二十六页,共61页。第27页/共60页第二十七页,共61页。第28页/共60页第二十八页,共61页。第29页/共60页第二十九页,共61页。第30页/共60页第三十页,共61页。第31页/共60页第三十一页,共61页。第32页/共60页第三十二页,共61页。4.差分方程在数学建模中的一些应用差分方程是描述客观事物的数量关系的一种重要的数学模型.在科学研究和生产实际中,经常碰到处理对象涉及的变量(如时间)是连续的,但是从建模的目的考虑,把连续变量离散化更为合适,将连续变量作离散化处理,从而将连续模型(微分方程)化为离散型(差分方程)问题.第33页/共60页第三十三页,共61页。在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系,从而建立起差分方程.或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程.第34页/共60页第三十四页,共61页。在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程.在下面所举的实际例子中,这方面的内容应当重点体会.

第35页/共60页第三十五页,共61页。4.1.金融问题的差分方程模型1.设现有一笔p万元的商业贷款,如果贷款期是n年,年利率是r1,今采用月还款的方式逐月偿还,建立数学模型计算每月的还款数是多少?

第36页/共60页第三十六页,共61页。模型分析:

在整个还款过程中,每月还款数是固定的,而待还款数是变化的,找出这个变量的变化规律是解决问题的关键.模型假设:模型建立:第37页/共60页第三十七页,共61页。模型求解:

第38页/共60页第三十八页,共61页。模型的进一步拓广分析:

第39页/共60页第三十九页,共61页。2.养老保险模型问题:养老保险是保险中的一种重要险种,保险公司将提供不同的保险方案以供选择,分析保险品种的实际投资价值.即分析如果已知所交保费和保险收入,按年或按月计算实际的利率是多少,也就是说,保险公司需要用你的保费实际获得至少多少利润才能保证兑现你的保险收益.下面的应用实例中,第40页/共60页第四十页,共61页。模型举例分析:假设每月交费p元至60岁开始领取养老金,男子若25岁起投保,届时养老金每月2282元;如35岁起保,届时月养老金1056元;试求出保险公司为了兑现保险责任,每月至少应有多少投资收益率,这也就是投保人的实际收益率.第41页/共60页第四十一页,共61页。模型假设:这应当是一个过程分析模型问题.过程的结果在条件一定时是确定的.整个过程可以按月进行划分,因为交费是按月进行的.假设:设投保人到第k月止所交保费及收益的累计总额为Fk;设r为每月收益率;记p、q分别为60岁前每月交费数和60岁后每月领取数;记N为停交保险费的月份,M为停领养老金的月份.第42页/共60页第四十二页,共61页。模型建立:在整个过程中,离散变量Fk的变化规律满足:在这里Fk实际上表示从保险人开始交纳保险费以后,保险人帐户上的资金数值.我们关心的是,在第M个月时,FM能否为非负数.如果为正数,则表明保险公司获得收益;如为负数,则表明保险公司出现亏损;当为零时,表明保险公司最后一无所有,所有的收益全归为保险人.第43页/共60页第四十三页,共61页。从这个分析来看,引入变量Fk,很好地刻画了整个过程中资金的变化关系,特别是引入收益率r,虽然它不是我们所求的保险人的收益率,但是从问题系统环境中来看,必然要考虑引入另一对象:保险公司的经营效益,以此作为整个过程中各种量变化的表现基础.

第44页/共60页第四十四页,共61页。模型计算:第45页/共60页第四十五页,共61页。4.2.人口的控制与预测模型背景分析:人口数量的发展变化规律及特性可以用偏微分方程的理论形式来表现和模拟.但在实际应用中不是很方便,需要建立离散化的模型,以便于分析、应用.人口数量的变化取决于诸多因素,比如:女性生育率、死亡率、性别比、人口基数等.试建立离散数学模型来表现人口数量的变化规律.

第46页/共60页第四十六页,共61页。模型假设:第47页/共60页第四十七页,共61页。第48页/共60页第四十八页,共61页。模型建立:第49页/共60页第四十九页,共61页。第50页/共60页第五十页,共61页。第51页/共60页第五十一页,共61页。模型分析:第52页/共60页第五十二页,共61页。4.3.蛛网模型经济背景与问题:在自由竞争的市场经济中,商品的价格是由市场上该商

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论