版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为()A. B. C. D.2.过双曲线的右焦点F作双曲线C的一条弦AB,且,若以AB为直径的圆经过双曲线C的左顶点,则双曲线C的离心率为()A. B. C.2 D.3.已知复数,满足,则()A.1 B. C. D.54.已知,,若,则向量在向量方向的投影为()A. B. C. D.5.设实数x,y满足条件x+y-2⩽02x-y+3⩾0x-y⩽0则A.1 B.2 C.3 D.46.在中,,则()A. B. C. D.7.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知函数,给出下列四个结论:①函数的值域是;②函数为奇函数;③函数在区间单调递减;④若对任意,都有成立,则的最小值为;其中正确结论的个数是()A. B. C. D.9.点是单位圆上不同的三点,线段与线段交于圆内一点M,若,则的最小值为()A. B. C. D.10.某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为()A. B. C. D.11.执行如图的程序框图,若输出的结果,则输入的值为()A. B.C.3或 D.或12.若样本的平均数是10,方差为2,则对于样本,下列结论正确的是()A.平均数为20,方差为4 B.平均数为11,方差为4C.平均数为21,方差为8 D.平均数为20,方差为8二、填空题:本题共4小题,每小题5分,共20分。13.命题“对任意,”的否定是.14.设为定义在上的偶函数,当时,(为常数),若,则实数的值为______.15.(5分)有一道描述有关等差与等比数列的问题:有四个和尚在做法事之前按身高从低到高站成一列,已知前三个和尚的身高依次成等差数列,后三个和尚的身高依次成等比数列,且前三个和尚的身高之和为cm,中间两个和尚的身高之和为cm,则最高的和尚的身高是____________cm.16.已知椭圆的离心率是,若以为圆心且与椭圆有公共点的圆的最大半径为,此时椭圆的方程是____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设等差数列满足,.(1)求数列的通项公式;(2)求的前项和及使得最小的的值.18.(12分)如图,在四棱柱中,平面,底面ABCD满足∥BC,且(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.19.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面积的最大值.20.(12分)已知函数的定义域为.(1)求实数的取值范围;(2)设实数为的最小值,若实数,,满足,求的最小值.21.(12分)已知等比数列,其公比,且满足,和的等差中项是1.(Ⅰ)求数列的通项公式;(Ⅱ)若,是数列的前项和,求使成立的正整数的值.22.(10分)在平面直角坐标系中,,,且满足(1)求点的轨迹的方程;(2)过,作直线交轨迹于,两点,若的面积是面积的2倍,求直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
列举出金、木、水、火、土任取两个的所有结果共10种,其中2类元素相生的结果有5种,再根据古典概型概率公式可得结果.【详解】金、木、水、火、土任取两类,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10种结果,其中两类元素相生的有火木、火土、木水、水金、金土共5结果,所以2类元素相生的概率为,故选A.【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….…这样才能避免多写、漏写现象的发生.2.C【解析】
由得F是弦AB的中点.进而得AB垂直于x轴,得,再结合关系求解即可【详解】因为,所以F是弦AB的中点.且AB垂直于x轴.因为以AB为直径的圆经过双曲线C的左顶点,所以,即,则,故.故选:C【点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题.3.A【解析】
首先根据复数代数形式的除法运算求出,求出的模即可.【详解】解:,,故选:A【点睛】本题考查了复数求模问题,考查复数的除法运算,属于基础题.4.B【解析】
由,,,再由向量在向量方向的投影为化简运算即可【详解】∵∴,∴,∴向量在向量方向的投影为.故选:B.【点睛】本题考查向量投影的几何意义,属于基础题5.C【解析】
画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】如图所示:画出可行域和目标函数,z=x+y+1,即y=-x+z-1,z表示直线在y轴的截距加上1,根据图像知,当x+y=2时,且x∈-13,1时,故选:C.【点睛】本题考查了线性规划问题,画出图像是解题的关键.6.A【解析】
先根据得到为的重心,从而,故可得,利用可得,故可计算的值.【详解】因为所以为的重心,所以,所以,所以,因为,所以,故选A.【点睛】对于,一般地,如果为的重心,那么,反之,如果为平面上一点,且满足,那么为的重心.7.B【解析】
或,从而明确充分性与必要性.【详解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分条件故选【点睛】本题考查充分性与必要性,简单三角方程的解法,属于基础题.8.C【解析】
化的解析式为可判断①,求出的解析式可判断②,由得,结合正弦函数得图象即可判断③,由得可判断④.【详解】由题意,,所以,故①正确;为偶函数,故②错误;当时,,单调递减,故③正确;若对任意,都有成立,则为最小值点,为最大值点,则的最小值为,故④正确.故选:C.【点睛】本题考查三角函数的综合运用,涉及到函数的值域、函数单调性、函数奇偶性及函数最值等内容,是一道较为综合的问题.9.D【解析】
由题意得,再利用基本不等式即可求解.【详解】将平方得,(当且仅当时等号成立),,的最小值为,故选:D.【点睛】本题主要考查平面向量数量积的应用,考查基本不等式的应用,属于中档题.10.A【解析】由题意得到该几何体是一个组合体,前半部分是一个高为底面是边长为4的等边三角形的三棱锥,后半部分是一个底面半径为2的半个圆锥,体积为故答案为A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.11.D【解析】
根据逆运算,倒推回求x的值,根据x的范围取舍即可得选项.【详解】因为,所以当,解得
,所以3是输入的x的值;当时,解得,所以是输入的x的值,所以输入的x的值为
或3,故选:D.【点睛】本题考查了程序框图的简单应用,通过结果反求输入的值,属于基础题.12.D【解析】
由两组数据间的关系,可判断二者平均数的关系,方差的关系,进而可得到答案.【详解】样本的平均数是10,方差为2,所以样本的平均数为,方差为.故选:D.【点睛】样本的平均数是,方差为,则的平均数为,方差为.二、填空题:本题共4小题,每小题5分,共20分。13.存在,使得【解析】试题分析:根据命题否定的概念,可知命题“对任意,”的否定是“存在,使得”.考点:命题的否定.14.1【解析】
根据为定义在上的偶函数,得,再根据当时,(为常数)求解.【详解】因为为定义在上的偶函数,所以,又因为当时,,所以,所以实数的值为1.故答案为:1【点睛】本题主要考查函数奇偶性的应用,还考查了运算求解的能力,属于基础题.15.【解析】
依题意设前三个和尚的身高依次为,第四个(最高)和尚的身高为,则,解得,又,解得,又因为成等比数列,则公比,故.16.【解析】
根据题意设为椭圆上任意一点,表达出,再根据二次函数的对称轴与求解的关系分析最值求解即可.【详解】因为椭圆的离心率是,,所以,故椭圆方程为.因为以为圆心且与椭圆有公共点的圆的最大半径为,所以椭圆上的点到点的距离的最大值为.设为椭圆上任意一点,则.所以因为的对称轴为.(i)当时,在上单调递增,在上单调递减.此时,解得.(ii)当时,在上单调递减.此时,解得舍去.综上,椭圆方程为.故答案为:【点睛】本题主要考查了椭圆上的点到定点的距离最值问题,需要根据题意设椭圆上的点,再求出距离,根据二次函数的对称轴与区间的关系分析最值的取值点分类讨论求解.属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2);时,取得最小值【解析】
(1)设等差数列的公差为,由,结合已知,联立方程组,即可求得答案.(2)由(1)知,故可得,即可求得答案.【详解】(1)设等差数列的公差为,由及,得解得数列的通项公式为(2)由(1)知时,取得最小值.【点睛】本题解题关键是掌握等差数列通项公式和前项和公式,考查了分析能力和计算能力,属于基础题.18.(Ⅰ)证明见解析;(Ⅱ)【解析】
(Ⅰ)证明,根据得到,得到证明.(Ⅱ)如图所示,分别以为轴建立空间直角坐标系,平面的法向量,,计算向量夹角得到答案.【详解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如图所示:分别以为轴建立空间直角坐标系,则,,,,.设平面的法向量,则,即,取得到,,设直线与平面所成角为故.【点睛】本题考查了线面垂直,线面夹角,意在考查学生的空间想象能力和计算能力.19.(1);(2)【解析】
(1)根据正弦定理化简得到,故,得到答案.(2)计算,再利用面积公式计算得到答案.【详解】(1),则,即,故,,故.(2),故,故.当时等号成立.,故,,故△ABC面积的最大值为.【点睛】本题考查了正弦定理,面积公式,均值不等式,意在考查学生的综合应用能力.20.(1);(2)【解析】
(1)首先通过对绝对值内式子符号的讨论,将不等式转化为一元一次不等式组,再分别解各不等式组,最后求各不等式组解集的并集,得到所求不等式的解集;(2)首先确定m的值,然后利用柯西不等式即可证得题中的不等式.【详解】(1)因为函数定义域为,即恒成立,所以恒成立由单调性可知当时,有最大值为4,即;(2)由(1)知,,由柯西不等式知所以,即的最小值为.当且仅当,,时,等号成立【点睛】本题主要考查绝对值不等式的解法,柯西不等式及其应用,意在考查学生的转化能力和计算求解能力.21.(Ⅰ).(Ⅱ).【解析】
(Ⅰ)由等差数列中项性质和等比数列的通项公式,解方程可得首项和公比,可得所求通项公式;(Ⅱ),由数列的错位相减法求和可得,解方程可得所求值.【详解】(Ⅰ)等比数列,其公比,且满足,和的等差中项是即有,解得:(Ⅱ)由(Ⅰ)知:则相减可得:化简可得:,即为解得:【点睛】本题考查等比数列的通项公式和求和公式的运用,考查数列的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海师范大学《国际人力资源管理(双语)》2023-2024学年第一学期期末试卷
- 上海师范大学《材料化学专业实验》2023-2024学年第一学期期末试卷
- 水渠项目绩效报告范文
- 课题申报书:公司债券发行审核反馈意见的经济影响、作用机制和政策评估研究
- 课题申报书:风险传染下缴费确定型养老金投资决策问题研究
- 上海农林职业技术学院《税法(一)》2023-2024学年第一学期期末试卷
- 专项10:文言文-【中职专用】2025年职教高考学业考试语文二轮专项突破(福建专用)
- 六年级语文上册第七单元习作 我的拿手好戏 公开课一等奖创新教学设计-1
- 上海旅游高等专科学校《系统》2023-2024学年第一学期期末试卷
- 2《永遇乐-京口北固亭怀古》公开课一等奖创新教案统编版高中语文必修上册
- 探究“燃烧的条件”实验的改进与创新(共11张PPT)
- 《戴小桥和他的哥们儿:特务足球队》交流课课件
- 2023届高考英语一轮复习 语法填空:人物传记类 专项练习10篇有答案
- 年5万吨含锡废料综合回收再生利用项目环评报告
- GB/T 22900-2022科学技术研究项目评价通则
- GM/T 0003.2-2012SM2椭圆曲线公钥密码算法第2部分:数字签名算法
- GB/T 28426-2021铁路大型养路机械钢轨探伤车
- 保安服务项目服务质量标准及日常检查考核标准
- Camtasia-Studio使用教程课件
- 新生儿危重症识别及处理课件
- ACS抗栓治疗出血和血栓的平衡之道课件
评论
0/150
提交评论