版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
实际问题与二次函数2.二次函数y=ax2+bx+c的图象是一条
,它的对称轴是
,顶点坐标是
.当a>0时,抛物线开口向
,有最
点,函数有最
值,是
;当
a<0时,抛物线开口向
,有最
点,函数有最
值,是
。抛物线上小下大高低
1.二次函数y=a(x-h)2+k的图象是一条
,它的对称轴是
,顶点坐标是
.抛物线直线x=h(h,k)基础扫描
3.二次函数y=2(x-3)2+5的对称轴是
,顶点坐标是
。当x=
时,y的最
值是
。
4.二次函数y=-3(x+4)2-1的对称轴是
,顶点坐标是
。当x=
时,函数有最
值,是
。
5.二次函数y=2x2-8x+9的对称轴是
,顶点坐标是
.当x=
时,函数有最
值,是
。直线x=3(3,5)3小5直线x=-4(-4,-1)-4大-1直线x=2(2,1)2小1基础扫描
水柱形成形状跳运时人在空中经过的路径篮球在空中经过的路径跳水运动员在空中经过的路径何时获得最大利润?何时橙子总产量最大?养鸡场面积何时最大?同学们,今天就让我们一起去体会生活中的数学给我们带来的乐趣吧!某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?来到商场请大家带着以下几个问题读题(1)题目中有几种调整价格的方法?
(2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?(0≤X≤30)可以看出,这个函数的图像是一条抛物线的一部分,这条抛物线的顶点是函数图像的最高点,也就是说当x取顶点坐标的横坐标时,这个函数有最大值。由公式可以求出顶点的横坐标.所以,当定价为65元时,利润最大,最大利润为6250元在降价的情况下,最大利润是多少?请你参考(1)的过程得出答案。解:设降价x元时利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买进商品需付40(300-10x)元,因此,得利润答:定价为元时,利润最大,最大利润为6050元做一做由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?(0≤x≤20)(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值。解这类题目的一般步骤
2.(09中考)某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件.设销售单价为x元(x≥50),一周的销售量为y件.(1)写出y与x的函数关系式(标明x的取值范围)(2)设一周的销售利润为S,写出S与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?(3)在超市对该种商品投入不超过10000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?中考链接5.某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.(1)试求y与x之间的关系式;(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?问题3
例
心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时,学生的注意力初步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散,经过实验分析可知,学生的注意力y随时间t的变化规律有如下关系(04黄冈)(1)讲课开始后第5分钟与讲课开始第25分钟比较,何时学生的注意力更集中?(2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?(3)一道数学题,需要讲解24分钟,为了效果较好,要求学生的注意力达到180,那么经过适当安排,老师能否在注意力达到所需的状态下讲解完这道题目?有一种螃蟹,从海上捕获后不放养最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去。假设放养期内蟹的个体重量基本保持不变。现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时的市场价为每千克30元。据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元。(1)设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售总额为Q元,写出Q与x的函数关系式;(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额-收购成本-费用)?增大利润是多少?OyABx某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线,在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为5米,同时,运动员在距水面5米以前,必须完成规定的翻腾动作并调整好入水姿势,否则就会出现失误。(1)求这条抛物线的解析式;(2在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误?并能过计算说明理由?
10m3m跳台支柱练习4来到操场8(4,4)如图,建立平面直角坐标系,点(4,4)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数为:(0≤x≤8)(0≤x≤8)∵篮圈中心距离地面3米∴此球不能投中若假设出手的角度和力度都不变,则如何才能使此球命中?探究(1)跳得高一点(2)向前平移一点yx(4,4)(8,3)在出手角度和力度都不变的情况下,小明的出手高度为多少时能将篮球投入篮圈?0123456789用抛物线的知识解决运动场上或者生活中的一些实际问题的一般步骤:建立直角坐标系二次函数问题求解找出实际问题的答案及时总例2:如图,等腰Rt△ABC的直角边AB=2,点P、Q分别从A、C两点同时出发,以相等的速度作直线运动,已知点P沿射线AB运动,点Q沿边BC的延长线运动,PQ与直线相交于点D。(1)设AP的长为x,△PCQ的面积为S,求出S关于x的函数关系式;(2)当AP的长为何值时,S△PCQ=S△ABC
解:(1)∵P、Q分别从A、C两点同时出发,速度相等当P在线段AB上时S△PCQ=CQ•PB=AP•PB=∴AP=CQ=x即S=(0<x<2)
动画演示(1)设矩形的一边AB=xcm,那么AD边的长度如何表示?(2)设矩形的面积为ym2,当x取何值时,y的最大值是多少?何时面积最大如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.MN40cm30cmABCD┐(1)设矩形的一边AB=xcm,那么AD边的长度如何表示?(2)设矩形的面积为ym2,当x取何值时,y的最大值是多少?何时面积最大如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.ABCD┐MN40cm30cmxcmbcm(1).如果设矩形的一边AD=xcm,那么AB边的长度如何表示?(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?何时面积最大如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.ABCD┐MN40cm30cmbcmxcm(1).设矩形的一边BC=xcm,那么AB边的长度如何表示?(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?何时面积最大如图,在一个直角三角形的内部作一个矩形ABCD,其中点A和点D分别在两直角边上,BC在斜边上.ABCD┐MNP40cm30cmxcmbcmHG┛┛何时窗户通过的光线最多某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有的黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?xxy生活是数学的源泉,探索是数学的生命线.寄语作业P28:2、3、4抛物线形拱桥,当水面在时,拱顶离水面2m,水面宽度4m,水面下降1m,水面宽度增加多少?xy0(2,-2)●(-2,-2)●解:设这条抛物线表示的二次函数为由抛物线经过点(-2,2),可得所以,这条抛物线的二次函数为:当水面下降1m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 门窗工程承包合同范本
- 2024年网站建设项目成效分析报告
- 2024年谷物生产项目评估分析报告
- 2023年交通供电检测装备项目评估分析报告
- 2024年合同样本 零担货物运输合同
- 2024年保洁外包合同
- 2024年进出口贸易合同模板
- 2024年酒店建设合同范本
- 皮制套装项目可行性实施报告
- 个人借款分期还款合同2024年
- 伤口评估记录表
- 中建体育中心工程预制看台吊装专项施工方案
- 《西洋乐器介绍》课件
- 心理咨询之精神分析疗法
- 2023春国开合同法第10章试题及答案
- 如何进行市场走访
- QSYTZ0110-2023年双相不锈钢材料焊接施工及验收规范
- 中学劳动教育评价细则
- 介绍辽宁朝阳的PPT模板
- 大凌河朝阳城区广场、旅游景区人工湿地工程设计
- 报价单-带图报价单
评论
0/150
提交评论