2018版高中数学第二章平面向量2.2.2向量的减法学案版4_第1页
2018版高中数学第二章平面向量2.2.2向量的减法学案版4_第2页
2018版高中数学第二章平面向量2.2.2向量的减法学案版4_第3页
2018版高中数学第二章平面向量2.2.2向量的减法学案版4_第4页
2018版高中数学第二章平面向量2.2.2向量的减法学案版4_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学必求其心得,业必贵于专精学必求其心得,业必贵于专精PAGEPAGE10学必求其心得,业必贵于专精2.学习目标1.理解相反向量的含义,向量减法的意义及减法法则。2.掌握向量减法的几何意义.3.能熟练地进行向量的加、减运算.知识点一相反向量思考实数a的相反数为-a,向量a与-a的关系应叫做什么?梳理(1)定义:如果两个向量长度__________,而方向________,那么称这两个向量是相反向量.(2)性质:①对于相反向量有:a+(-a)=0.②若a,b互为相反向量,则a=-b,a+b=0.③零向量的相反向量仍是________.知识点二向量的减法思考根据向量的加法,如何求作a-b?梳理(1)向量减法的定义若____________,则向量x叫做a与b的差,记为________,求两个向量差的运算,叫做向量的减法.(2)向量的减法法则以O为起点,作向量eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,则eq\o(BA,\s\up6(→))=a-b,即当向量a,b起点相同时,从________的终点指向________的终点的向量就是a-b.类型一向量减法的几何作图例1如图,已知向量a,b,c不共线,求作向量a+b-c.引申探究若本例条件不变,则a-b-c如何作?反思与感悟求作两个向量的差向量时,当两个向量有共同起点,直接连结两个向量的终点,并指向被减向量,就得到两个向量的差向量;若两个向量的起点不重合,先通过平移使它们的起点重合时,再作出差向量.跟踪训练1如图所示,已知向量a,b,c,d,求作向量a-b,c-d.类型二向量减法法则的应用例2化简下列式子:(1)eq\o(NQ,\s\up6(→))-eq\o(PQ,\s\up6(→))-eq\o(NM,\s\up6(→))-eq\o(MP,\s\up6(→));(2)(eq\o(AB,\s\up6(→))-eq\o(CD,\s\up6(→)))-(eq\o(AC,\s\up6(→))-eq\o(BD,\s\up6(→))).反思与感悟向量减法的三角形法则的内容是:两向量相减,表示两向量起点的字母必须相同,这样两向量的差向量以减向量的终点字母为起点,以被减向量的终点字母为终点.跟踪训练2化简:(1)(eq\o(BA,\s\up6(→))-eq\o(BC,\s\up6(→)))-(eq\o(ED,\s\up6(→))-eq\o(EC,\s\up6(→)));(2)(eq\o(AC,\s\up6(→))+eq\o(BO,\s\up6(→))+eq\o(OA,\s\up6(→)))-(eq\o(DC,\s\up6(→))-eq\o(DO,\s\up6(→))-eq\o(OB,\s\up6(→))).类型三向量减法几何意义的应用例3已知|eq\o(AB,\s\up6(→))|=6,|eq\o(AD,\s\up6(→))|=9,求|eq\o(AB,\s\up6(→))-eq\o(AD,\s\up6(→))|的取值范围.反思与感悟(1)如图所示,平行四边形ABCD中,若eq\o(AB,\s\up6(→))=a,eq\o(AD,\s\up6(→))=b,则eq\o(AC,\s\up6(→))=a+b,eq\o(DB,\s\up6(→))=a-b.(2)在公式||a|-|b||≤|a+b|≤|a|+|b|中,当a与b方向相反且|a|≥|b|时,|a|-|b|=|a+b|;当a与b方向相同时,|a+b|=|a|+|b|.(3)在公式||a|-|b||≤|a-b|≤|a|+|b|中,当a与b方向相同,且|a|≥|b|时,|a|-|b|=|a-b|;当a与b方向相反时,|a-b|=|a|+|b|。跟踪训练3在四边形ABCD中,设eq\o(AB,\s\up6(→))=a,eq\o(AD,\s\up6(→))=b,且eq\o(AC,\s\up6(→))=a+b,|a+b|=|a-b|,则四边形ABCD的形状一定是________.1.如图所示,在▱ABCD中,eq\o(AB,\s\up6(→))=a,eq\o(AD,\s\up6(→))=b,则用a,b表示向量eq\o(AC,\s\up6(→))和eq\o(BD,\s\up6(→))分别是______.2.化简eq\o(OP,\s\up6(→))-eq\o(QP,\s\up6(→))+eq\o(PS,\s\up6(→))+eq\o(SP,\s\up6(→))的结果等于________.3.若向量a与b满足|a|=5,|b|=12,则|a+b|的最小值为_____,|a-b|的最大值为_____.4.若菱形ABCD的边长为2,则|eq\o(AB,\s\up6(→))-eq\o(CB,\s\up6(→))+eq\o(CD,\s\up6(→))|=________.5.已知|a|=6,|b|=8,且|a+b|=|a-b|,则|a-b|=________.1.向量减法的实质是向量加法的逆运算.利用相反向量的定义,-eq\o(AB,\s\up6(→))=eq\o(BA,\s\up6(→))就可以把减法转化为加法.即减去一个向量等于加上这个向量的相反向量.如a-b=a+(-b).2.在用三角形法则作向量减法时,要注意“差向量连结两向量的终点,箭头指向被减向量”.解题时要结合图形,准确判断,防止混淆.3.以平行四边形ABCD的两邻边AB、AD分别表示向量eq\o(AB,\s\up6(→))=a,eq\o(AD,\s\up6(→))=b,则两条对角线表示的向量为eq\o(AC,\s\up6(→))=a+b,eq\o(BD,\s\up6(→))=b-a,eq\o(DB,\s\up6(→))=a-b,这一结论在以后应用非常广泛,应该加强理解并掌握.

答案精析问题导学知识点一思考相反向量.梳理(1)相等相反(2)③零向量知识点二思考先作出-b,再按三角形或平行四边形法则作出a+(-b).梳理(1)b+x=aa-b(2)ba题型探究例1解如图,在平面内任取一点O,作eq\o(OA,\s\up6(→))=a,eq\o(AB,\s\up6(→))=b,则eq\o(OB,\s\up6(→))=a+b,再作eq\o(OC,\s\up6(→))=c,则eq\o(CB,\s\up6(→))=a+b-c.引申探究解如图,在平面内任取一点O,作eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,则eq\o(BA,\s\up6(→))=a-b.再作eq\o(CA,\s\up6(→))=c,则eq\o(BC,\s\up6(→))=a-b-c。跟踪训练1解如图所示,在平面内任取一点O,作eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,eq\o(OC,\s\up6(→))=c,eq\o(OD,\s\up6(→))=d.则a-b=eq\o(BA,\s\up6(→)),c-d=eq\o(DC,\s\up6(→)).例2解(1)原式=eq\o(NP,\s\up6(→))+eq\o(MN,\s\up6(→))-eq\o(MP,\s\up6(→))=eq\o(NP,\s\up6(→))+eq\o(PN,\s\up6(→))=eq\o(NP,\s\up6(→))-eq\o(NP,\s\up6(→))=0。(2)原式=eq\o(AB,\s\up6(→))-eq\o(CD,\s\up6(→))-eq\o(AC,\s\up6(→))+eq\o(BD,\s\up6(→))=(eq\o(AB,\s\up6(→))-eq\o(AC,\s\up6(→)))+(eq\o(DC,\s\up6(→))-eq\o(DB,\s\up6(→)))=eq\o(CB,\s\up6(→))+eq\o(BC,\s\up6(→))=0。跟踪训练2解(1)(eq\o(BA,\s\up6(→))-eq\o(BC,\s\up6(→)))-(eq\o(ED,\s\up6(→))-eq\o(EC,\s\up6(→)))=eq\o(CA,\s\up6(→))-eq\o(CD,\s\up6(→))=eq\o(DA,\s\up6(→)).(2)(eq\o(AC,\s\up6(→))+eq\o(BO,\s\up6(→))+eq\o(OA,\s\up6(→)))-(eq\o(DC,\s\up6(→))-eq\o(DO,\s\up6(→))-eq\o(OB,\s\up6(→)))=eq\o(AC,\s\up6(→))+eq\o(BA,\s\up6(→))-eq\o(DC,\s\up6(→))+(eq\o(DO,\s\up6(→))+eq\o(OB,\s\up6(→)))=eq\o(AC,\s\up6(→))+eq\o(BA,\s\up6(→))-eq\o(DC,\s\up6(→))+eq\o(DB,\s\up6(→))=eq\o(BC,\s\up6(→))-eq\o(DC,\s\up6(→))+eq\o(DB,\s\up6(→))=eq\o(BC,\s\up6(→))+eq\o(CD,\s\up6(→))+eq\o(DB,\s\up6(→))=eq\o(BC,\s\up6(→))+eq\o(CB,\s\up6(→))=0。例3解∵||eq\o(AB,\s\up6(→))|-|eq\o(AD,\s\up6(→))||≤|eq\o(AB,\s\up6(→))-eq\o(AD,\s\up6(→))|≤|eq\o(AB,\s\up6(→))|+|eq\o(AD,\s\up6(→))|,且|eq\o(AD,\s\up6(→))|=9,|eq\o(AB,\s\up6(→))|=6,∴3≤|eq\o(AB,\s\up6(→))-eq\o(AD,\s\up6(→))|≤15。当eq\o(AD,\s\up6(→))与eq\o(AB,\s\up6(→))同向时,|eq\o(AB,\s\up6(→))-eq\o(AD,\s\up6(→))|=3;当eq\o(AD,\s\up6(→))与eq\o(AB,\s\up6(→))反向时,|eq\o(AB,\s

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论