版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.在△ABC中,AB=AC=13,BC=24,则tanB等于()A. B. C. D.2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y>0时,x的取值范围是()A.-1<x<2 B.x>2 C.x<-1 D.x<-1或x>23.已知锐角α,且sinα=cos38°,则α=()A.38° B.62° C.52° D.72°4.如图,在扇形中,∠,,则阴影部分的面积是()A. B.C. D.5.口袋中有14个红球和若干个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,记下颜色后放回,多次实验后发现摸到白球的频率稳定在0.3,则白球的个数是()A.5 B.6 C.7 D.86.如图,,,以下结论成立的是()A. B.C. D.以上结论都不对7.如图,在一张矩形纸片中,对角线,点分别是和的中点,现将这张纸片折叠,使点落在上的点处,折痕为,若的延长线恰好经过点,则点到对角线的距离为().A. B. C. D.8.如图,点A是以BC为直径的半圆的中点,连接AB,点D是直径BC上一点,连接AD,分别过点B、点C向AD作垂线,垂足为E和F,其中,EF=2,CF=6,BE=8,则AB的长是()A.4 B.6 C.8 D.109.下列图形中,既是轴对称图形又是中心对称图形的是()A.平行四边形 B.菱形 C.等边三角形 D.等腰直角三角形10.若将抛物线y=x2平移,得到新抛物线,则下列平移方法中,正确的是()A.向左平移3个单位 B.向右平移3个单位C.向上平移3个单位 D.向下平移3个单位11.若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是()A.1 B.0,1 C.1,2 D.1,2,312.将抛物线向右平移一个单位,向上平移2个单位得到抛物线A. B. C. D.二、填空题(每题4分,共24分)13.某种药原来每瓶售价为40元,经过两次降价,现在每瓶售价为25.6元,若设平均每次降低的百分率为,根据题意列出方程为______________________.14.如图,矩形EFGH内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF=EH,那么EH的长为___.15.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.16.在△ABC中,AB=10,AC=8,B为锐角且,则BC=_____.17.一元二次方程的解是.18.如图,在中,,于点D,于点E,F、G分别是BC、DE的中点,若,则FG的长度为__________.三、解答题(共78分)19.(8分)如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.20.(8分)如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB的中点,过点B、点C分别作BE∥CD,CE∥BD.(1)求证:四边形BECD是菱形;(2)若∠A=60°,AC=,求菱形BECD的面积.21.(8分)如图,在平行四边形ABCD中,E为BC边上一点,连接DE,点F为线段DE上一点,且∠AFE=∠B.(1)求证△ADF∽△DEC;(2)若BE=2,AD=6,且DF=DE,求DF的长度.22.(10分)2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.23.(10分)下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.已知:⊙O及⊙O外一点P.求作:直线PA和直线PB,使PA切⊙O于点A,PB切⊙O于点B.作法:如图,①连接OP,分别以点O和点P为圆心,大于OP的同样长为半径作弧,两弧分别交于点M,N;②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线PA和直线PB.所以直线PA和PB就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=________°()(填推理的依据).∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.24.(10分)如图,是直径AB所对的半圆弧,点P是与直径AB所围成图形的外部的一个定点,AB=8cm,点C是上一动点,连接PC交AB于点D.小明根据学习函数的经验,对线段AD,CD,PD,进行了研究,设A,D两点间的距离为xcm,C,D两点间的距离为cm,P,D两点之间的距离为cm.小明根据学习函数的经验,分别对函数,随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(2)按照下表中自变量x的值进行取点、画图、测量,分别得到了,与x的几组对应值:x/cm0.002.002.003.003.204.005.006.006.502.008.00/cm0.002.042.093.223.304.004.423.462.502.530.00/cm6.245.294.353.463.302.642.00m2.802.002.65补充表格;(说明:补全表格时,相关数值保留两位小数)(2)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,并画出函数的图象:(3)结合函数图象解决问题:当AD=2PD时,AD的长度约为___________.25.(12分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线,且抛物线经过B(1,0),C(0,3)两点,与x轴交于点A.(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴直线上找一点M,使点M到点B的距离与到点C的距离之和最小,求出点M的坐标;(3)如图2,点Q为直线AC上方抛物线上一点,若∠CBQ=45°,请求出点Q坐标.26.如图,在△ABC中,点D在边AB上,DE∥BC,DF∥AC,DE、DF分别交边AC、BC于点E、F,且.(1)求的值;(2)联结EF,设=,=,用含、的式子表示.
参考答案一、选择题(每题4分,共48分)1、B【解析】如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,AD=,故tanB=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.2、D【分析】根据已知图象可以得到图象与x轴的交点是(-1,0),(2,0),又y>0时,图象在x轴的上方,由此可以求出x的取值范围.【详解】依题意得图象与x轴的交点是(-1,0),(2,0),当y>0时,图象在x轴的上方,此时x<-1或x>2,∴x的取值范围是x<-1或x>2,故选D.【点睛】本题考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,注意数形结合思想的运用.3、C【分析】根据一个角的正弦值等于它的余角的余弦值求解即可.【详解】∵sinα=cos38°,
∴α=90°-38°=52°.
故选C.【点睛】本题考查了锐角三角函数的性质,掌握正余弦的转换方法:一个角的正弦值等于它的余角的余弦值.4、D【分析】利用阴影部分的面积等于扇形面积减去的面积即可求解.【详解】=故选D【点睛】本题主要考查扇形面积和三角形面积,掌握扇形面积公式是解题的关键.5、B【分析】设白球的个数为x,利用概率公式即可求得.【详解】设白球的个数为x,由题意得,从14个红球和x个白球中,随机摸出一个球是白球的概率为0.3,则利用概率公式得:,解得:,经检验,x=6是原方程的根,故选:B.【点睛】本题考查了等可能下概率的计算,理解题意利用概率公式列出等式是解题关键.6、C【分析】根据已知条件结合相似三角形的判定定理逐项分析即可.【详解】解:∵∠AOD=90°,设OA=OB=BC=CD=x∴AB=x,AC=x,AD=x,OC=2x,OD=3x,BD=2x,∴,∴∴.故答案为C.【点睛】本题主要考查了相似三角形的判定,①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.7、B【分析】设DH与AC交于点M,易得EG为△CDH的中位线,所以DG=HG,然后证明△ADG≌△AHG,可得AD=AH,∠DAG=∠HAG,可推出∠BAH=∠HAG=∠DAG=30°,然后设BH=a,则BC=AD=AH=2a,利用勾股定理建立方程可求出a,然后在Rt△AGM中,求出GM,AG,再求斜边AM上的高即为G到AC的距离.【详解】如图,设DH与AC交于点M,过G作GN⊥AC于N,∵E、F分别是CD和AB的中点,∴EF∥BC∴EG为△CDH的中位线∴DG=HG由折叠的性质可知∠AGH=∠B=90°∴∠AGD=∠AGH=90°在△ADG和△AHG中,∵DG=HG,∠AGD=∠AGH,AG=AG∴△ADG≌△AHG(SAS)∴AD=AH,AG=AB,∠DAG=∠HAG由折叠的性质可知∠HAG=∠BAH,∴∠BAH=∠HAG=∠DAG=∠BAD=30°设BH=a,在Rt△ABH中,∠BAH=30°∴AH=2a∴BC=AD=AH=2a,AB=在Rt△ABC中,AB2+BC2=AC2即解得∴DH=2GH=2BH=,AG=AB=∵CH∥AD∴△CHM∽△ADM∴∴AM=AC=,HM=DH=∴GM=GH-HM=在Rt△AGM中,∴故选B.【点睛】本题考查了矩形的性质,折叠的性质,全等三角形与相似三角形的判定与性质,以及勾股定理的应用,解题的关键是求出∠BAH=30°,再利用勾股定理求出边长.8、D【分析】延长BE交于点M,连接CM,AC,依据直径所对的圆周角是90度,及等弧对等弦,得到直角三角形BMC和等腰直角三角形BAC,依据等腰直角三角形三边关系,知道要求AB只要求直径BC,直径BC可以在直角三角形BMC中运用勾股定理求,只需要求出BM和CM,依据三个内角是直角的四边形是矩形,可以得到四边形EFCM是矩形,从而得到CM和EM的长度,再用BE+EM即得BM,此题得解.【详解】解:延长BE交于点M,连接CM,AC,∵BC为直径,∴,又∵由得:,∴四边形EFCM是矩形,∴MC=EF=2,EM=CF=6又∵BE=8,∴BM=BE+EM=8+6=14,∴,∵点A是以BC为直径的半圆的中点,∴AB=AC,又∵,∴,∴AB=10.故选:D.【点睛】本题考查了圆周角定理的推理——直径所对的圆周角是90度,矩形的判定与性质,勾股定理,解题的关键是构造两个直角三角形,将已知和待求用勾股定理建立等式.9、B【解析】试题解析:A.不是轴对称图形,是中心对称图形,故此选项错误,不合题意;B.是轴对称图形,也是中心对称图形,故此选项正确,符合题意;C.是轴对称图形,不是中心对称图形,故此选项错误,不合题意;D.无法确定是轴对称图形,也不是中心对称图形,故此选项错误,不合题意.故选B.10、A【解析】先确定抛物线y=x1的顶点坐标为(0,0),抛物线y=(x+3)1的顶点坐标为(-3,0),然后利用顶点的平移情况确定抛物线的平移情况.【详解】解:抛物线y=x1的顶点坐标为(0,0),抛物线y=(x+3)1的顶点坐标为(-3,0),
因为点(0,0)向左平移3个单位长度后得到(-3,0),
所以把抛物线y=x1向左平移3个单位得到抛物线y=(x+3)1.
故选:A.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.11、A【详解】由题意得,根的判别式为△=(-4)2-4×3k,由方程有实数根,得(-4)2-4×3k≥0,解得k≤,由于一元二次方程的二次项系数不为零,所以k≠0,所以k的取值范围为k≤且k≠0,即k的非负整数值为1,故选A.12、B【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线向右平移一个单位所得直线解析式为:;再向上平移2个单位为:,即.故选B.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.二、填空题(每题4分,共24分)13、【分析】设平均每次降低的百分率为x,根据某种药原来每瓶为40元,经过两次降价,现在每瓶售价25.1元列出方程,解方程即可.【详解】设平均每次降低的百分率为x,根据题意得:40(1﹣x)2=25.1.故答案为:40(1﹣x)2=25.1.【点睛】本题考查了一元二次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.14、【详解】解:如图所示:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴,设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,∴,解得:x=,则EH=.故答案为.【点睛】本题考查相似三角形的判定与性质;矩形的性质.15、3.1或4.32或4.2【解析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC=1,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可.【详解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AB==5,S△ABC=AB•BC=1.沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=•S△ABC=×1=3.1;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD=,∴AD=DP==1.2,∴AP=2AD=3.1,∴S等腰△ABP=•S△ABC=×1=4.32;③当CB=CP=4时,如图3所示,S等腰△BCP=•S△ABC=×1=4.2;综上所述:等腰三角形的面积可能为3.1或4.32或4.2,故答案为3.1或4.32或4.2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.16、8+2或8﹣2【分析】分两种情况进行解答,即①∠ACB为锐角,②∠ACB为钝角,分别画出图形,利用三角函数解直角三角形即可.【详解】过点A作AD⊥BC,垂足为D,①当∠ACB为锐角时,如图1,在Rt△ABD中,BD=AB•cosB=10×=8,AD==6,在Rt△ACD中,CD==2,∴BC=BD+CD=8+2,②当∠ACB为钝角时,如图2,在Rt△ABD中,BD=AB•cosB=10×=8,AD==6,在Rt△ACD中,CD==2,∴BC=BD﹣CD=8﹣2,故答案为:8+2或8﹣2.【点睛】考查直角三角形的边角关系,理解锐角三角函数的意义是正确解答的关键,分类讨论在此类问题中经常用到.17、±1.【解析】试题分析:∵x1-4=0∴x=±1.考点:解一元二次方程-直接开平方法.18、1【分析】连接EF、DF,根据直角三角形的性质得到EF=BC=20,得到FE=FD,根据等腰三角形的性质得到FG⊥DE,GE=GD=DE=12,根据勾股定理计算即可.【详解】解:连接EF、DF,
∵BD⊥AC,F为BC的中点,
∴DF=BC=20,
同理,EF=BC=20,
∴FE=FD,又G为DE的中点,
∴FG⊥DE,GE=GD=DE=12,由勾股定理得,FG==1,故答案为:1.【点睛】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.三、解答题(共78分)19、(1)见解析;(2)+【分析】(1)利用题中的边的关系可求出△OAC是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB与⊙O相切;(2)作AE⊥CD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD.【详解】(1)直线AB是⊙O的切线,理由如下:连接OA.∵OC=BC,AC=OB,∴OC=BC=AC=OA,∴△ACO是等边三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切线.(2)作AE⊥CD于点E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2.【点睛】本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、(1)见解析;(2)面积=【分析】(1)先证明四边形BECD是平行四边形,再根据直角三角形中线的性质可得CD=BD,再根据菱形的判定即可求解;
(2)根据图形可得菱形BECD的面积=直角三角形ACB的面积,根据三角函数可求BC,根据直角三角形面积公式求解即可.【详解】(1)证明:∵BE∥CD,CE∥BD,
∴四边形BECD是平行四边形,
∵Rt△ABC中点D是AB中点,
∴CD=BD,
∴四边形BECD是菱形;
(2)解:∵Rt△ABC中,∠A=60°,AC=,∴BC=AC=3,∴直角三角形ACB的面积为3×÷2=,∴菱形BECD的面积是.【点睛】本题考查了平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.21、(1)见解析;(2)DF=4【分析】(1)根据平行四边形的性质得到∠ADF=∠DEC,∠C+∠B=180°,根据∠AFE=∠B得到∠AFD=∠C,根据相似三角形的判定定理即可证明;(2)根据相似三角形的性质列出比例式,代入计算即可.【详解】解:(1)证明:∵四边形ABCD是平行四边形,∴∠C+∠B=180°,∠ADF=∠DEC,∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)∵△ADF∽△DEC∴∵四边形ABCD是平行四边形,AD=6,BE=2∴EC=BC-BE=AD-BE=4,又∵DF=DE∴DE=DF∴解得DF=4.【点睛】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的判定定理和性质定理是解决本题的关键.22、(1)40,补图详见解析;(2)108°;(3).【分析】(1)由一等奖人数及其所占百分比可得总人数,总人数减去一等奖、三等奖人数求出二等奖人数即可补全图形;(2)用360°乘以二等奖人数所占百分比可得答案;(3)画出树状图,由概率公式即可解决问题.【详解】解:(1)本次比赛获奖的总人数为4÷10%=40(人),二等奖人数为40﹣(4+24)=12(人),补全条形图如下:(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360°×=108°;(3)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是=.【点睛】此题主要考查统计图的运用及概率的求解,解题的关键是根据题意列出树状图,再利用概率告诉求解.23、(1)补全图形见解析;(2)90;直径所对的圆周角是直角.【分析】(1)根据题中得方法依次作图即可;(2)直径所对的圆周角是直角,据此填写即可.【详解】(1)补全图形如图(2)∵直径所对的圆周角是直角,∴∠OAP=∠OBP=90°,故答案为:90;直径所对的圆周角是直角,【点睛】本题主要考查了尺规作图以及圆周角性质,熟练掌握相关方法是解题关键.24、(2)m=2.23;(2)见解析;(3)4.3【分析】(2)根据表格中的数据可得:当x=5或2时,y2=2.00,然后画出图形如图,可得当与时,,过点P作PM⊥AB于M,然后根据等腰三角形的性质和勾股定理求出PM的长即得m的值;(2)用光滑的曲线依次连接各点即可;(3)由题意AD=2PD可得x=2y2,只要在函数y2的图象上寻找横坐标是纵坐标的2倍的点即可,然后结合图象解答即可.【详解】解:(2)由表格可知:当x=5或2时,y2=2.00,如图,即当时,,时,,∴,过点P作PM⊥AB于M,则,则在Rt△中,,即当x=6时,m=2.23;(2)如图:(3)由题意得:AD=2PD,即x=2y2,即在函数y2的图象上寻找横坐标是纵坐标的2倍的点即可,如图,点Q的位置即为所求,此时,x≈4.3,即AD≈4.3.故答案为:4.3.【点睛】本题主要考查了函数图象的规律、等腰三角形的性质、勾股定理和圆的有关知识,正确理解题意、把握题中的规律、熟练运用数形结合的思想方法是解题关键.25、(1);(2)当点到点的距离与到点的距离之和最小时的坐标为;(3)点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024广西玉林市容县冬季赴高校公开招聘教师19人补充笔试备考试题及答案解析
- 电影发行合同范本完整版3篇
- 2024年度医药研发合作合同3篇
- 2024年度大蒜购销:农产品供需协议书
- 二零二四年度玻璃幕墙工程保险合同
- 常见劳动合同范本(04版)
- 二零二四年物联网平台建设与技术合作合同3篇
- 仓库物业转让合同范本2024年度特供
- 拆迁烂尾楼施工合同范本3篇
- 二零二四年度常州仓储物流服务合同范本
- 2024冬季安全十防措施专题培训
- 《机械基础》试题集
- 2024新苏教版一年级数学册第三单元第1课《图形的初步认识》课件
- 第10课时-小人物-大情怀-单元总结-七年级语文下册(部编版)
- (正式版)HGT 22820-2024 化工安全仪表系统工程设计规范
- 综合实践活动课《早餐与健康》优质课件
- 《中华民族共同体概论》考试复习题库(含答案)
- 国家开放大学《教育组织行为与管理案例》大作业参考答案
- 大体积筏板基础用钢管支撑钢筋及利用钢管散热施工技术讲解
- 归档文件整理规则DA/T22—2015
- 安全生产组织机构保证体系框架图
评论
0/150
提交评论