版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列说法正确的是()A.“任意画一个三角形,其内角和为”是随机事件B.某种彩票的中奖率是,说明每买100张彩票,一定有1张中奖C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.投掷一枚质地均匀的硬币100次,正面向上的次数一定是50次2.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.一元二次方程的解是()A. B. C., D.,4.二次函数的图象如图所示,其对称轴为,有下列结论:①;②;③;④对任意的实数,都有,其中正确的是()A.①② B.①④ C.②③ D.②④5.从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球,由此估计口袋中大约有多少个白球()A.10个 B.20个 C.30个 D.无法确定6.如图,在中..是的角平分线.若在边上截取,连接,则图中等腰三角形共有()A.3个 B.5个 C.6个 D.2个7.下列式子中,为最简二次根式的是()A. B. C. D.8.如图,已知⊙O是等腰Rt△ABC的外接圆,点D是上一点,BD交AC于点E,若BC=4,AD=,则AE的长是()A.1 B.1.2 C.2 D.39.如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为()A.40° B.45° C.60° D.80°10.下列函数是二次函数的是().A.y=2x B.y=+xC.y=x+5 D.y=(x+1)(x﹣3)二、填空题(每小题3分,共24分)11.微信给甲、乙、丙三人,若微信的顺序是任意的,则第一个微信给甲的概率为_____.12.如图,是的切线,为切点,,,点是上的一个动点,连结并延长,交的延长线于,则的最大值为_________
13.如图,是一个半径为6cm,面积为12πcm2的扇形纸片,现需要一个半径为R的圆形纸片,使两张纸片刚好能组合成圆锥体,则R等于_____cm.14.如图,是的直径,弦交于点,,,,则的长为_____.15.在中,,,,则的长是__________.16.关于的一元二次方程的二根为,且,则_____________.17.已知,一个小球由地面沿着坡度的坡面向上前进10cm,则此时小球距离地面的高度为______cm.18.已知一个扇形的半径为5cm,面积是20cm2,则它的弧长为_____.三、解答题(共66分)19.(10分)如图,一栋居民楼AB的高为16米,远处有一栋商务楼CD,小明在居民楼的楼底A处测得商务楼顶D处的仰角为60°,又在商务楼的楼顶D处测得居民楼的楼顶B处的俯角为45°.其中A、C两点分别位于B、D两点的正下方,且A、C两点在同一水平线上,求商务楼CD的高度.(参考数据:≈1.414,≈1.1.结果精确到0.1米)20.(6分)已知:如图,,点在射线上.求作:正方形,使线段为正方形的一条边,且点在内部.21.(6分)篮球课上,朱老师向学生详细地讲解传球的要领时,叫甲、乙、丙、丁四位同学配合朱老师进行传球训练,朱老师把球传给甲同学后,让四位同学相互传球,其他人观看体会,当甲同学第一个传球时,求甲同学传给下一个同学后,这个同学再传给甲同学的概率22.(8分)在△ABC中,AB=6cm,AC=8cm,BC=10cm,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,连接EF,则EF的最小值为多少cm?23.(8分)定义:无论函数解析式中自变量的字母系数取何值,函数的图象都会过某一个点,这个点称为定点.例如,在函数中,当时,无论取何值,函数值,所以这个函数的图象过定点.求解体验(1)①关于的一次函数的图象过定点_________.②关于的二次函数的图象过定点_________和_________.知识应用(2)若过原点的两条直线、分别与二次函数交于点和点且,试求直线所过的定点.拓展应用(3)若直线与拋物线交于、两点,试在拋物线上找一定点,使,求点的坐标.24.(8分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点处垂直海面发射,当火箭到达点处时,海岸边处的雷达站测得点到点的距离为8千米,仰角为30°.火箭继续直线上升到达点处,此时海岸边处的雷达测得处的仰角增加15°,求此时火箭所在点处与发射站点处的距离.(结果精确到0.1千米)(参考数据:,)25.(10分)如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3),(1)①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出△ABC绕原点O逆时针旋转90°得到的△A2B2C2,写出点C2的坐标;(2)若△ABC上任意一点P(m,n)绕原点O逆时针旋转90°的对应点为Q,则点Q的坐标为________.(用含m,n的式子表示)26.(10分)已知点M(2,a)在反比例函数y=(k≠0)的图象上,点M关于原点中心对称的点N在一次函数y=﹣2x+8的图象上,求此反比例函数的解析式.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据必然事件,随机事件,可能事件的概念解题即可.【详解】解:A.“任意画一个三角形,其内角和为”是不可能事件,错误,B.某种彩票的中奖率是,说明每买100张彩票,一定有1张中奖,可能事件不等于必然事件,错误,C.“篮球队员在罚球线上投篮一次,投中”为随机事件,正确,D.投掷一枚质地均匀的硬币100次,正面向上的次数可能是50次,错误,故选C.【点睛】本题考查了必然事件,随机事件,可能事件的概念,属于简单题,熟悉概念是解题关键.2、B【解析】由题意根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意.故选:B.【点睛】本题主要考查轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、C【解析】用因式分解法解一元二次方程即可.【详解】∴或∴,故选C.【点睛】本题主要考查一元二次方程的解,掌握解一元二次方程的方法是解题的关键.4、B【分析】根据二次函数的图象与性质(对称性、与x轴、y轴的交点)、二次函数与一元二次方程的关系逐个判断即可.【详解】抛物线的开口向下对称轴为,异号,则抛物线与y轴的交点在y轴的上方,则①正确由图象可知,时,,即则,②错误由对称性可知,和的函数值相等则时,,即,③错误可化为关于m的一元二次方程的根的判别式则二次函数的图象特征:抛物线的开口向下,与x轴只有一个交点因此,,即,从而④正确综上,正确的是①④故选:B.【点睛】本题考查了二次函数的图象与性质(对称性、与x轴、y轴的交点)、二次函数与一元二次方程的关系,熟练掌握函数的图象与性质是解题关键.5、B【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是,设口袋中大约有x个白球,则,解得x=1.经检验:x=1是原方程的解故选B.6、B【分析】根据等腰三角形的判定及性质和三角形的内角和定理求出各角的度数,逐一判断即可.【详解】解:∵,∴∠ABC=∠ACB=72°,∠A=180°-∠ABC-∠ACB=36°,△ABC为等腰三角形∵是的角平分线∴∠ABD=∠CBD=∠ABC=36°∴∠BDC=180°-∠CBD-∠C=72°,∠ABD=∠A∴∠BDC=∠ACB,DA=DB,△DBC为等腰三角形∴BC=BD,△BCD为等腰三角形∵∴∠BED=∠BDE=(180°-∠ABD)=72°,△BEC为等腰三角形∴∠AED=180°-∠BED=108°∴∠EDA=180°-∠AED-∠A=36°∴∠EDA=∠A∴ED=EA,△EDA为等腰三角形共有5个等腰三角形故选B.【点睛】此题考查的是等腰三角形的判定及性质和三角形的内角和,掌握等边对等角、等角对等边和三角形的内角和定理是解决此题的关键.7、B【分析】利用最简二次根式定义判断即可.【详解】A、原式,不符合题意;B、是最简二次根式,符合题意;C、原式,不符合题意;D、原式,不符合题意;故选B.【点睛】此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.8、A【解析】利用圆周角性质和等腰三角形性质,确定AB为圆的直径,利用相似三角形的判定及性质,确定△ADE和△BCE边长之间的关系,利用相似比求出线段AE的长度即可.【详解】解:∵等腰Rt△ABC,BC=4,∴AB为⊙O的直径,AC=4,AB=4,∴∠D=90°,在Rt△ABD中,AD=,AB=4,∴BD=,∵∠D=∠C,∠DAC=∠CBE,∴△ADE∽△BCE,∵AD:BC=:4=1:5,∴相似比为1:5,设AE=x,∴BE=5x,∴DE=-5x,∴CE=28-25x,∵AC=4,∴x+28-25x=4,解得:x=1.故选A.【点睛】题目考查了圆的基本性质、等腰直角三角形性质、相似三角形的判定及应用等知识点,题目考查知识点较多,是一道综合性试题,题目难易程度适中,适合课后训练.9、A【解析】试题分析:∵弧长,∴圆心角.故选A.10、D【分析】直接利用二次函数的定义进而分析得出答案.【详解】解:A、y=2x,是一次函数,故此选项错误;B、y=+x,不是整式,故此选项错误;C、y=x+5,是一次函数,故此选项错误;D、y=(x+1)(x﹣3),是二次函数,故此选项正确.故选D.【点睛】此题主要考查了二次函数的定义,正确把握函数的定义是解题关键.二、填空题(每小题3分,共24分)11、【分析】根据题意,微信的顺序是任意的,微信给甲、乙、丙三人的概率都相等均为.【详解】∵微信的顺序是任意的,∴微信给甲、乙、丙三人的概率都相等,∴第一个微信给甲的概率为.故答案为.【点睛】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12、【分析】根据题意可知当ED与相切时,EC最大,再利用△ECD∽△EBA,找到对应边的关系即可求解.【详解】解:如图,当CD⊥DE于点D时EC最大.∵CD⊥DE,是的切线∴∠EDC=∠EAB=90°又∵∠E=∠E∴△ECD∽△EBA∴∴则∵,,∠EAB=90°∴CD=AC=1在Rt△ABE中利用勾股定理得即则∴可化为,解得或(舍去)综上所述,的最大值为.【点睛】本题考查了切线和相似的性质,能通过切线的性质找到符合要求的点,再能想到相似得到对应边的关系是解答此题的关键.13、2.【解析】能组合成圆锥体,那么扇形的弧长等于圆形纸片的周长.应先利用扇形的面积=圆锥的弧长母线长,得到圆锥的弧长=2扇形的面积母线长,进而根据圆锥的底面半径=圆锥的弧长求解.【详解】圆锥的弧长,
圆锥的底面半径,
故答案为2.【点睛】解决本题的难点是得到圆锥的弧长与扇形面积之间的关系,注意利用圆锥的弧长等于底面周长这个知识点.14、【分析】作于,连结,由,得,由,,得,进而得,根据勾股定理得,即可得到答案.【详解】作于,连结,如图,∵,∴,∵,,∴,∴,∴,∵在中,,∴,∴,∵在中,,,∴,∴.故答案为:【点睛】本题主要考查垂径定理和勾股定理的综合,添加辅助线,构造直角三角形和弦心距,是解题的关键.15、【分析】根据cosA=可求得AB的长.【详解】解:由题意得,cosA=,∴cos45°=,解得AB=.故答案为:.【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.16、【分析】先降次,再利用韦达定理计算即可得出答案.【详解】∵的一元二次方程的二根为∴∴又,代入得解得:m=故答案为.【点睛】本题考查的是一元二次方程根与系数的关系,若的一元二次方程的二根为,则,.17、.【分析】利用勾股定理及坡度的定义即可得到所求的线段长.【详解】如图,由题意得,,设由勾股定理得,,即,解得则故答案为:.【点睛】本题考查了勾股定理及坡度的定义,掌握理解坡度的定义是解题关键.18、1【分析】利用扇形的面积公式S扇形弧长×半径,代入可求得弧长.【详解】设弧长为L,则20L×5,解得:L=1.故答案为:1.【点睛】本题考查了扇形的面积公式,掌握扇形的面积等于弧长和半径乘积的一半是解答本题的关键.三、解答题(共66分)19、商务楼的高度为37.9米.【解析】首先分析图形,根据题意构造直角三角形.本题涉及两个直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分别计算,可得到一个关于AC的方程,从而求出DC.【详解】过点B作BE⊥CD与点E,由题意可知∠DBE=,∠DAC=,CE=AB=16设AC=x,则,BE=AC=x∵∵∴BE=DE∴∴∴∴答:商务楼的高度为37.9米.20、见详解【分析】先以点B为圆心,以BD为半径画弧,作出点E,再分别以点D,点E为圆心,以BD为半径画弧,作出点F,连结即可作出正方形.【详解】如图,作法:1.以点B为圆心,以BD长为半径画弧,交AB于点E;2.分别以点D,点E为圆心,以BD长为半径画弧,两弧相交于点F,3.连结EF,FD,∴四边形DBEF即为所求作的正方形.理由:∵BD=DF=FE=EB∴四边形DBEF为菱形,∵∴四边形DBEF是正方形.【点睛】本题主要考查了基本作图,正方形的判定.解题的关键是熟记作图的方法及正方形的判定.21、.【分析】画出树状图,然后找到甲同学传给下一个同学后,这个同学再传给甲同学的结果数多即可得.【详解】由题意可画如下的树状图:由树状图可知,共有9种等可能性的结果,其中甲同学传给下一个同学后,这个同学再传给甲同学的结果有3种甲同学传给下一个同学后,这个同学再传给甲同学的概率.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22、4.8cm【分析】连接AP,先利用勾股定理的逆定理证明△ABC为直角三角形,∠A=90°,可知四边形AEPF为矩形,则AP=EF,当AP的值最小时,EF的值最小,利用垂线段最短得到AP⊥BC时,AP的值最小,然后利用面积法计算此时AP的长即可.【详解】解:连接AP,∵AB=6cm,AC=8cm,BC=10cm,∴AB2+AC2=BC2,∴△ABC是直角三角形,∴∠A=90°,又∵PE⊥AB,PF⊥AC,∴四边形AEPF是矩形,∴AP=EF,当AP⊥BC时,EF的值最小,∵,∴.解得AP=4.8cm.∴EF的最小值是4.8cm.【点睛】此题考查了直角三角形的判定及性质、矩形的判定与性质.关于矩形,应从平行四边形的内角的变化上认识其特殊性:一个内角是直角的平行四边形,进一步研究其特有的性质:是轴对称图形、内角都是直角、对角线相等.同时平行四边形的性质矩形也都具有.利用矩形对角线线段对线段进行转换求解是解题关键.23、(1)①;②;(2)直线上的定点为;(3)点为【分析】(1)①由可得y=k(x+3),当x=﹣3时,y=0,故过定点(﹣3,0),即可得出答案.②由,当x=0或x=1时,可得y=2020,即可得出答案.(2)由题意可得,直线AB的函数式,根据相似三角形的判定可得,进而根据相似三角形的性质可得,代入即可得出直线AB的函数式,当x=0时,y=﹣2,进而得出答案.(3)由、可得直线的解析式为,又由直线,可得c+d和cd的值,最后根据相似三角形的性质以及判定,列出方程,即可得出E的坐标.【详解】解:(1)①;②.提示:①,当时,,故过定点.②,当或1时,,故过定点.(2)设直线的解析式为,将点的坐标代入并解得直线的解析式为.如图,分别过点作轴的垂线于点,∴.∵,∴,∴,∴,∴,即,解得,故直线的解析式为.当时,,故直线上的定点为.(3)∵点的坐标分别为,,同(2)可得直线的解析式为,∵,∴.设点,如图,过点作直线轴,过点作直线的垂线与直线分别交于点.同(2)可得,,∴,即,化简得,即,当时,上式恒成立,故定点为.【点睛】本题主要考察二次函数的综合运用,熟练掌握并灵活运用一次函数、相似三角形的判定以及性质是解题的关键.24、此时火箭所在点处与发射站点处的距离约为.【解析】利用已知结合锐角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年南通客运资格证考试题目
- 吉首大学《家具设计》2021-2022学年第一学期期末试卷
- 吉首大学《插画设计B》2021-2022学年第一学期期末试卷
- 吉林艺术学院《艺术概论》2021-2022学年第一学期期末试卷
- 吉林艺术学院《曲式基础》2021-2022学年第一学期期末试卷
- 吉林艺术学院《行草临摹与创作》2021-2022学年第一学期期末试卷
- 吉林艺术学院《CG美宣图创作实践》2021-2022学年第一学期期末试卷
- 2024年大众帕萨特购买协议书模板
- 引进外劳协议书范文模板范文
- 吉林艺术学院《节奏训练II》2021-2022学年第一学期期末试卷
- PEP版五年级英语上册教案Unit 1 单元教案 5
- 中医内科学 消渴课件
- 体检中心理论知识考核试题与答案
- 燃气安全知识与应急管理培训课件
- 国家社科基金申报经验课件
- 消防演练方案脚本
- 企业经营管理尽职合规免责事项清单
- 幼儿园健康课件ppt
- 2022年公交站台监理规划
- 大坝帷幕灌浆与充填灌浆施工方案
- 基础化学第1章-气体、溶液和胶体
评论
0/150
提交评论