上海浦东第四教育署2022年数学九年级第一学期期末质量跟踪监视试题含解析_第1页
上海浦东第四教育署2022年数学九年级第一学期期末质量跟踪监视试题含解析_第2页
上海浦东第四教育署2022年数学九年级第一学期期末质量跟踪监视试题含解析_第3页
上海浦东第四教育署2022年数学九年级第一学期期末质量跟踪监视试题含解析_第4页
上海浦东第四教育署2022年数学九年级第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,小颖身高为160cm,在阳光下影长AB=240cm,当她走到距离墙角(点D)150cm处时,她的部分影子投射到墙上,则投射在墙上的影子DE的长度为()A.50 B.60 C.70 D.802.已知二次函数y=﹣x2﹣bx+1(﹣5<b<2),则函数图象随着b的逐渐增大而()A.先往右上方移动,再往右平移B.先往左下方移动,再往左平移C.先往右上方移动,再往右下方移动D.先往左下方移动,再往左上方移动3.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F.P是⊙A上一点,且∠EPF=40°,则图中阴影部分的面积是()A.4- B.4- C.8- D.8-4.将抛物线向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是()A. B. C. D.5.如图,是的直径,点、在上.若,则的度数为()A. B. C. D.6.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.正五边形 D.圆7.如图,点、、在上,,,则的度数为()A. B. C. D.8.方程的根是()A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=29.若是方程的根,则的值为()A.2022 B.2020 C.2018 D.201610.如图,△AOB缩小后得到△COD,△AOB与△COD的相似比是3,若C(1,2),则点A的坐标为()A.(2,4) B.(2,6) C.(3,6) D.(3,4)11.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,在随机摸出一个球,两次都摸到黑球的概率是()A. B. C. D.12.若双曲线y=在每一个象限内,y随x的增大而减小,则k的取值范围是()A.k<3 B.k≥3 C.k>3 D.k≠3二、填空题(每题4分,共24分)13.两个相似三角形的面积比为4:9,那么它们对应中线的比为______.14.如图,正△ABO的边长为2,O为坐标原点,A在轴上,B在第二象限.△ABO沿轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚10次后AB中点M经过的路径长为________15.如图,△ABC的内切圆与三边分别切于点D,E,F,若∠C=90°,AD=3,BD=5,则△ABC的面积为_____.16.如图,在⊙O中,分别将弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是__________________.17.形状与抛物线相同,对称轴是直线,且过点的抛物线的解析式是________.18.因式分解:_______________________.三、解答题(共78分)19.(8分)(1)已知关于x的一元二次方程x2+(a+3)x+a+1=1.求证:无论a取何值,原方程总有两个不相等的实数根:(2)已知:二次函数y=ax2+bx+c(a≠1)中的x和y满足下表:x…﹣11123…y…31﹣11m…①观察上表可求得m的值为;②试求出这个二次函数的解析式.20.(8分)赵化鑫城某超市购进了一批单价为16元的日用品,销售一段时间后,为获得更多的利润,商场决定提高销售的价格,经试验发现,若按每件20元销售,每月能卖360件;若按每件25元销售,每月能卖210件;若每月的销售件数y(件)与价格x(元/件)满足y=kx+b.(1)求出k与b的值,并指出x的取值范围?(2)为了使每月获得价格利润1920元,商品价格应定为多少元?(3)要使每月利润最大,商品价格又应定为多少?最大利润是多少?21.(8分)如图,在△ABC中,∠C=90°,P为AB上一点,且点P不与点A重合,过点P作PE⊥AB交AC边于E点,点E不与点C重合,若AB=10,AC=8,设AP的长为x,四边形PECB的周长为y,(1)试证明:△AEP∽△ABC;(2)求y与x之间的函数关系式.22.(10分)某课桌生产厂家研究发现,倾斜12°至24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度得桌面.新桌面的设计图如图1,可绕点旋转,在点处安装一根长度一定且处固定,可旋转的支撑臂,.(1)如图2,当时,,求支撑臂的长;(2)如图3,当时,求的长.(结果保留根号)(参考数据:,,,)23.(10分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,3),B(b,1)两点.(1)求反比例函数的表达式;(2)在x轴上找一点P,使PA+PB的值最小,并求满足条件的点P的坐标;(3)连接OA,OB,求△OAB的面积.24.(10分)已知:如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.25.(12分)(2015德阳)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.26.平安超市准备进一批书包,每个进价为元.经市场调查发现,售价为元时可售出个;售价每增加元,销售量将减少个.超市若准备获得利润元,并且使进货量较少,则每个应定价为多少

参考答案一、选择题(每题4分,共48分)1、B【分析】过E作EF⊥CG于F,利用相似三角形列出比例式求出投射在墙上的影子DE长度即可.【详解】过E作EF⊥CG于F,设投射在墙上的影子DE长度为x,由题意得:△GFE∽△HAB,∴AB:FE=AH:(GC−x),则240:150=160:(160−x),解得:x=60.故选B.【点睛】本题考查相似三角形的判定与性质,解题突破口是过E作EF⊥CG于F.2、D【分析】先分别求出当b=﹣5、0、2时函数图象的顶点坐标即可得结论.【详解】解:二次函数y=﹣x2﹣bx+1(﹣5<b<2),当b=﹣5时,y=﹣x2+5x+1=﹣(x﹣)2+,顶点坐标为(,);当b=0时,y=﹣x2+1,顶点坐标为(0,1);当b=2时,y=﹣x2﹣2x+1=﹣(x+1)2+2,顶点坐标为(﹣1,2).故函数图象随着b的逐渐增大而先往左下方移动,再往左上方移动.故选:D.【点睛】本题主要考查了二次函数图象,掌握二次函数的性质是解决本题的关键.3、B【解析】试题解析:连接AD,

∵BC是切线,点D是切点,

∴AD⊥BC,

∴∠EAF=2∠EPF=80°,

∴S扇形AEF=,

S△ABC=AD•BC=×2×4=4,

∴S阴影部分=S△ABC-S扇形AEF=4-π.4、D【分析】由平移可知,抛物线的开口方向和大小不变,顶点改变,将抛物线化为顶点式,求出顶点,再由平移求出新的顶点,然后根据顶点式写出平移后的抛物线解析式.【详解】解:,即抛物线的顶点坐标为,把点向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为,所以平移后得到的抛物线解析式为.故选D.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5、C【分析】根据圆周角定理计算即可.【详解】解:∵,∴,∴,故选:C.【点睛】此题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考常考题型.6、D【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故A错误;B、平行四边形不是轴对称图形,是中心对称图形,故B错误;C、正五边形是轴对称图形,不是中心对称图形,故C错误;D、圆是轴对称图形,也是中心对称图形,故D正确.故选:D.【点睛】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.7、C【分析】根据平行线的性质及圆周角定理即可求解.【详解】∵,∴,∵,∴,故选:C.【点睛】本题主要考查了圆周角定理及平行线的性质,熟练运用相关知识点是解决本题的关键.8、C【解析】试题解析:x(x+1)=0,

⇒x=0或x+1=0,

解得x1=0,x1=-1.

故选C.9、B【分析】根据一元二次方程的解的定义,将x=m代入已知方程,即可求得(m2+m)的值,然后将其整体代入所求的代数式进行求值即可.【详解】依题意得:m2+m-1=0,

则m2+m=1,

所以2m2+2m+2018=2(m2+m)+2018=2×1+2018=1.

故选:B.【点睛】此题考查一元二次方程的解.解题关键在于能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.10、C【解析】根据位似变换的性质计算即可.【详解】由题意得,点A与点C是对应点,△AOB与△COD的相似比是3,∴点A的坐标为(1×3,2×3),即(3,6),故选:C.【点睛】本题考查的是位似变换的性质,掌握在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k是解题的关键.11、A【详解】解:画树状图得:∵共有4种等可能的结果,两次都摸到黑球的只有1种情况,∴两次都摸到黑球的概率是.故选A.12、C【分析】根据反比例函数的性质可解.【详解】解:∵双曲线在每一个象限内,y随x的增大而减小,∴k-3>0∴k>3故选:C.【点睛】本题考查了反比例函数的性质,掌握反比例函数,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.二、填空题(每题4分,共24分)13、2:1.【分析】根据相似三角形的面积的比等于相似比的平方进行计算即可;【详解】解:∵两个相似三角形的面积比为4:9,∴它们对应中线的比.故答案为:2:1.【点睛】本题主要考查了相似三角形的性质,掌握相似三角形的性质是解题的关键.14、(4+)【分析】根据题意先作B3E⊥x轴于E,观察图象可知为三次一个循环,求点M的运动路径,进而分析求得翻滚10次后AB中点M经过的路径长.【详解】解:如图作B3E⊥x轴于E,可知OE=5,B3E=,观察图象可知为三次一个循环,一个循环点M的运动路径为:,则翻滚10次后AB中点M经过的路径长为:.故答案为:(4+).【点睛】本题考查规律题,解题的关键是灵活运用弧长公式、等边三角形的性质等知识解决问题.15、1【分析】直接利用切线长定理得出AD=AF=3,BD=BE=5,FC=EC,再结合勾股定理得出FC的长,进而得出答案.【详解】解:∵Rt△ABC的内切圆⊙I分别与斜边AB、直角边BC、CA切于点D、E、F,AD=3,BD=5,∴AD=AF=3,BD=BE=5,FC=EC,设FC=EC=x,则(3+x)2+(5+x)2=82,整理得,x2+8x﹣5=0,解得:(不合题意舍去),则,故Rt△ABC的面积为故答案为1.【点睛】本题考查了切线长定理和勾股定理,解决本题的关键是正确理解题意,熟练掌握切线长定理的相关内容,找到线段之间的关系.16、【分析】作OH⊥AB,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH⊥AB,垂足为H,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,则OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=HE=,OG=GF=,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG=HB=GD∴AB=CD又∵AB∥CD∴四边形ABCD是平行四边形,在Rt△OHA中,由勾股定理得:AH=∴AB=∴四边形ABCD的面积=AB×GH=.故答案为:.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD是矩形.17、或.【分析】先从已知入手:由与抛物线形状相同则相同,且经过点,即把代入得,再根据对称轴为可求出,即可写出二次函数的解析式.【详解】解:设所求的二次函数的解析式为:,与抛物线形状相同,,,又∵图象过点,∴,∵对称轴是直线,∴,∴当时,,当时,,所求的二次函数的解析式为:或.【点睛】本题考查了利用待定系数法求二次函数的解析式和二次函数的系数和图象之间的关系.解答时注意抛物线形状相同时要分两种情况:①开口向下,②开口向上;即相等.18、【分析】先提公因式,再用平方差公式分解.【详解】解:【点睛】本题考查因式分解,掌握因式分解方法是关键.三、解答题(共78分)19、(2)证明见解析;(2)①3;②y=(x﹣2)2﹣2.【分析】(2)△=(a+3)2﹣4(a+2)=a2+2a+5=(a+2)2+4>2,即可求解;(2)①函数的对称轴为:x=2,根据函数的对称轴知,m=3,即可求解;②函数的顶点坐标为(2,﹣2),故抛物线的表达式为:y=a(x﹣2)2﹣2,将(2,2)代入上式并解得:a=2,即可求解.【详解】(2)△=(a+3)2﹣4(a+2)=a2+2a+5=(a+2)2+4>2,故无论a取何值,原方程总有两个不相等的实数根;(2)①函数的对称轴为:x=2,根据函数的对称性可得,m=3,故答案为:3;②函数的顶点坐标为(2,﹣2),故抛物线的表达式为:y=a(x﹣2)2﹣2,将(2,2)代入上式得:2=a(2﹣2)2﹣2,解得:a=2,故抛物线的表达式为:y=(x﹣2)2﹣2.【点睛】此题考查一元二次方程根的判别式,二次函数的性质,待定系数法求函数的解析式,此题中能读懂表格中的数值变化是解题的关键.20、(1)k=﹣30,b=960,x取值范围为16≤x≤32;(2)商品的定价为24元;(3)商品价格应定为24元,最大利润是1元.【分析】(1)根据待定系数法求解即可;根据单价不低于进价(16元)和销售件数y≥0可得关于x的不等式组,解不等式组即得x的取值范围;(2)根据每件的利润×销售量=1,可得关于x的方程,解方程即可求出结果;(3)设每月利润为W元,根据W=每件的利润×销售量可得W与x的函数关系式,然后根据二次函数的性质解答即可.【详解】解:(1)由题意,得:,解得:,∴y=﹣30x+960,∵y≥0,∴﹣30x+960≥0,解得:x≤32,又∵x≥16,∴x的取值范围是:16≤x≤32;答:k=﹣30,b=960,x取值范围为:16≤x≤32;(2)由题意,得:(﹣30x+960)(x﹣16)=1,解得:x1=x2=24,答:商品的定价为24元;(3)设每月利润为W元,由题意,得:W=(﹣30x+960)(x﹣16)=﹣30(x﹣24)2+1.∵﹣30<0,∴当x=24时,W最大=1.答:商品价格应定为24元,最大利润是1元.【点睛】本题是方程和函数的应用题,主要考查了待定系数法求一次函数的解析式、一元二次方程的解法和二次函数的性质等知识,属于常考题型,熟练掌握一元二次方程的解法和二次函数的性质是解题的关键.21、(1)见解析;(2)y=.(0<x<6.4)【分析】(1)可证明△APE和△ACB都是直角三角形,还有一个公共角,从而得出:△AEP∽△ABC;(2)由勾股定理得出BC,再由相似,求出PE=x,,即可得出y与x的函数关系式.【详解】(1)∵PE⊥AB,∴∠APE=90°,又∵∠C=90°,∴∠APE=∠C,又∵∠A=∠A,∴△AEP∽△ABC;(2)在Rt△ABC中,AB=10,AC=8,∴BC=,由(1)可知,△APE∽△ACB∴,又∵AP=x,即,∴PE=x,,∴=.(0<x<6.4)【点睛】本题考查了相似三角形的性质问题,掌握相似三角形的性质以及判定定理是解题的关键.22、(1)12cm;(2)12+6或12−6.【分析】(1)利用锐角三角函数关系得出,进而求出CD即可;(2)利用锐角三角函数关系得出,再由勾股定理求出DE、AE的值,即可求出AD的长度.【详解】解:(1)∵∠BAC=24°,,∴∴,∴支撑臂的长为12cm(2)如图,过点C作CE⊥AB,于点E,当∠BAC=12°时,∴∴∵CD=12,∴由勾股定理得:,∴AD的长为(12+6)cm或(12−6)cm【点睛】本题考查了解直角三角形的应用,熟练运用三角函数关系是解题关键.23、(1);(2)点P的坐标为(﹣,0);(3)1【分析】(1)根据待定系数法,即可得到答案;(2)先求出点B的坐标,作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,再求出AD所在直线的解析式,进而即可求解;(3)设直线AB与y轴交于E点,根据S△OAB=S△OBE﹣S△AOE,即可求解.【详解】(1)将点A(﹣1,3)代入y=得:3=,解得:k=﹣3,∴反比例函数的表达式为:y=﹣;(2)把B(b,1)代入y=x+1得:b+1=1,解得:b=﹣3,∴点B的坐标为(﹣3,1),作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,如图,∵点B的坐标为(﹣3,1),∴点D的坐标为(﹣3,﹣1).设直线AD的函数表达式为:y=mx+n,将点A(﹣1,3)、D(﹣3,﹣1)代入y=mx+n,得,解得,∴直线AD的函数表达式为:y=2x+5,当y=0时,2x+5=0,解得:x=﹣,∴点P的坐标为(﹣,0);(3)设直线AB与y轴交于E点,如图,令x=0,则y=0+1=1,则点E的坐标为(0,1),∴S△OAB=S△OBE﹣S△AOE=×1×3﹣×1×1=1.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论