下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本文格式为Word版,下载可任意编辑——初中数学零指数幂与负整指数幂,教案
教学目标:
1、能较纯熟地运用零指数幂与负整指数幂的性质举行有关计算。
2、会利用10的负整数次幂,用科学记数法表示一些十足值较小的数。
重点难点:
重点:幂的性质(指数为全体整数)并会用于计算以及用科学记数法表示一些十足值较小的数
难点:理解和应用整数指数幂的性质。
教学过程:
一、复习练习:
1、;=;=,=,=。
2、不用计算器计算:÷(—2)2—2-1+
二、指数的范围扩大到了全体整数.
1、探索
现在,我们已经引进了零指数幂和负整数幂,指数的范围已经扩大到了全体整数.那么,在“幂的运算”中所学的幂的性质是否还成立呢?与同学们议论并交流一下,判断以下式子是否成立.
(1);(2)(ab)-3=a-3b-3;(3)(a-3)2=a(-3)×2
2、概括:指数的范围已经扩大到了全体整数后,幂的运算法那么依旧成立。
3、例1计算(2mn2)-3(mn-2)-5并且把结果化为只含有正整数指数幂的形式。
解:原式=2-3m-3n-6×m-5n10=m-8n4=
4练习:计算以下各式,并且把结果化为只含有正整数指数幂的形式:
(1)(a-3)2(ab2)-3;(2)(2mn2)-2(m-2n-1)-3.
三、科学记数法
1、回忆:在之前的学习中,我们曾用科学记数法表示一些十足值较大的数,即利用10的正整数次幂,把一个十足值大于10的数表示成a×10n的形式,其中n是正整数,1≤∣a∣<10.例如,864000可以写成8.64×105.
2、类似地,我们可以利用10的负整数次幂,用科学记数法表示一些十足值较小的数,即将它们表示成a×10-n的形式,其中n是正整数,1≤∣a∣<10.
3、探索:
10-1=0.1
10-2=
10-3=
10-4=
10-5=
归纳:10-n=
例如,上面例2(2)中的0.000021可以表示成2.1×10-5.
4、例2、一个纳米粒子的直径是35纳米,它等于多少米?请用科学记数法表示.
分析我们知道:1纳米=米.由=10-9可知,1纳米=10-9米.
所以35纳米=35×10-9米.
而35×10-9=(3.5×10)×10-9
=35×101+(-9)=3.5×10-8,
所以这个纳米粒子的直径为3.5×10-8米.
5、练习
①用科学记数法表示:
(1)0.00003;(2)-0.0000064;(3)0.0000314;(4)2022000.
②用科学记数法填空:
(1)1秒是1微秒的1000000倍,那么1微秒=_________秒;
(2)1毫克=_________千克;
(3)1微米=_________米;(4)1纳米=_________微米;
(5)1平方厘米=_________平方米;(6)1毫升=_________立方米.
本课小结:
引进了零指数幂和负整数幂,指数的范围扩大到了全体整数,幂的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度环保节能技术服务订单式购销合同
- 四川德阳广汉市农业技术推广站广汉市特色产业发展服务中心招聘2人历年高频重点提升(共500题)附带答案详解
- 四川2025年平昌县事业单位招考高频重点提升(共500题)附带答案详解
- 厦门市机关事务管理局补充招考2名非在编工作人员高频重点提升(共500题)附带答案详解
- 南京市溧水区国企业招考25人高频重点提升(共500题)附带答案详解
- 华能山西综合能源限责任公司招聘高频重点提升(共500题)附带答案详解
- 北京航空航天大学宇航学院科研助理招考聘用通知高频重点提升(共500题)附带答案详解
- 北京市朝阳区2025下半年事业单位招聘149人历年高频重点提升(共500题)附带答案详解
- 北京市东城区2025年事业单位招聘高频重点提升(共500题)附带答案详解
- 农业部北京单位招聘应届高校毕业生历年高频重点提升(共500题)附带答案详解
- 2024股权融资计划
- 2025北京昌平初二(上)期末数学真题试卷(含答案解析)
- 西式面点师试题与答案
- 广东省广州市海珠区2023-2024学年九年级上学期期末语文试题(答案)
- 小区智能化系统工程施工组织设计方案
- 单位内部治安保卫制度
- 【8物(科)期末】合肥市蜀山区2023-2024学年八年级上学期期末物理试题
- GB/T 44990-2024激光熔覆修复层界面结合强度试验方法
- ps经典课程-海报设计(第六讲)
- 钢结构连廊专项吊装方案(通过专家论证)
- 50MWp渔光互补光伏电站项目锤桩施工方案
评论
0/150
提交评论