初中数学北师大版九年级下册第二章二次函数5二次函数与一元二次方程【区一等奖】_第1页
初中数学北师大版九年级下册第二章二次函数5二次函数与一元二次方程【区一等奖】_第2页
初中数学北师大版九年级下册第二章二次函数5二次函数与一元二次方程【区一等奖】_第3页
初中数学北师大版九年级下册第二章二次函数5二次函数与一元二次方程【区一等奖】_第4页
初中数学北师大版九年级下册第二章二次函数5二次函数与一元二次方程【区一等奖】_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版数学九年级下册第二章第5节二次函数与一元二次方程同步练习一、选择题1、如图,已知二次函数y=ax2+bx+c的部分图象,由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=,x2=()A. B. C. D.以上都不对答案:C解析:解答:由抛物线图象可知其对称轴为x=3,因为抛物线与x轴的两个交点关于对称轴对称,所以两根满足(x1+x2)/2=3而x1=,所以x2=.因此选C.分析:根据图象知道抛物线的对称轴为x=3,根据抛物线是轴对称图象和已知条件即可求出x2.2、如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.-1<x<5 B.x>5 C.x<-1且x>5 D.x<-1或x>5答案:D解析:解答:由图象得:对称轴是x=2,其中一个点的坐标为(5,0),∴图象与x轴的另一个交点坐标为(-1,0).利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴x<-1或x>5.因此选:D.分析:利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出ax2+bx+c<0的解集3、二次函数y=-x2+2x+k的部分图象如图所示,则关于x的一元二次方程-x2+2x+k=0的一个解x1=3,另一个解x2=()A.1 B.-1 C.-2 D.0答案:B解析:解答:由抛物线图象可知其对称轴为x=1,因为抛物线与x轴的两个交点关于对称轴对称,其中一个点的坐标为(3,0),所以图象与x轴的另一个交点坐标为(-1,0)所以选B.分析:根据图象知道抛物线的对称轴为x=1,根据抛物线是轴对称图象和已知条件即可求出x2.4、如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=-1,则该抛物线与x轴的另一交点坐标是()A.(-3,0) B.(-2,0) C.x=-3 D.x=-2答案:A解析:解答:由抛物线图象可知其对称轴为x=-1,因为抛物线与x轴的两个交点关于对称轴对称,其中一个点的坐标为(1,0),所以图象与x轴的另一个交点坐标为(-3,0)所以选A.分析:根据图象知道抛物线的对称轴为x=-1,根据抛物线是轴对称图象和已知条件即可求出另一个交点坐标为(-3,0).5、抛物线y=ax2+bx+c(a≠0)与x轴的交点是(-2,0)和(4,0),这条抛物线的对称轴是()A.直线x=1 B.直线x=-1 C.直线x=2 D.直线x=-2答案:A解析:解答:∵抛物线y=ax2+bx+c(a≠0)与x轴的交点是(-2,0)和(4,0),∴这条抛物线的对称轴是:x=(-2+4)/2,即x=1;所以选A.分析:根据对称轴的定义知x=(x1+x2)/26、若x1,x2(x1<x2)是方程(x-a)(x-b)=1(a<b)的两个根,则实数x1,x2,a,b的大小关系为()A.x1<x2<a<b B.x1<a<x2<b C.x1<a<b<x2 D.a<x1<b<x2答案:C解析:解答:用作图法比较简单,首先作出(x-a)(x-b)=0图象,随便画一个(开口向上的,与x轴有两个交点),再向下平移一个单位,就是(x-a)(x-b)=1,这时与x轴的交点就是x1,x2,画在同一坐标系下,很较易发现:答案是:x1<a<b<x2.所以选C.分析:因为x1和x2为方程的两根,所以满足方程(x-a)(x-b)=1,再由已知条件x1<x2、a<b结合图象,可得到x1,x2,a,b的大小关系.7、已知抛物线y=ax2-2x+1与x轴没有交点,那么该抛物线的顶点所在的象限是()A.第四象限 B.第三象限 C.第二象限 D.第一象限答案:D解析:解答:∵抛物线y=ax2-2x+1与x轴没有交点,∴△=4-4a<0,解得:a>1,∴抛物线的开口向上,∴抛物线的顶点只能在第一象限或第二象限。∵b=-2,a>1,∴∴抛物线的对称轴在y轴的右侧,∴抛物线的顶点在第一象限;∴选D.分析:根据抛物线y=ax2-2x+1与x轴没有交点,得出△=4-4a<0,a>1,再根据b=-2,得出抛物线的对称轴在y轴的右侧,即可求出答案.8、已知二次函数y=x2+bx-2的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是()A.(1,0) B.(2,0) C.(-2,0) D.(-1,0)答案:C解析:解答:把x=1,y=0代入y=x2+bx-2得:0=1+b-2,∴b=1,∴y=x2+x-2令y=0,解得x1=1,x2=-2它与x轴的另一个交点坐标是(-2,0).故选C.分析:把交点坐标(1,0),代入二次函数y=x2+bx-2求出b的值,进而知道抛物线为y=x2+x-2,可求出它与x轴的另一个交点坐标.9、二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.-3 B.3 C.-6 D.9答案:B解析:解答:一元二次方程ax2+bx+m=0有实数根,可以理解为y=ax2+bx和y=-m有交点,可见,-m≥-3,∴m≤3,∴m的最大值为3.因此选B.分析:一元二次方程ax2+bx+m=0有实数根,可以理解为y=ax2+bx和y=-m有交点,即可m的取值范围.10、如图,将二次函数y=31x2-999x+892的图形画在坐标平面上,判断方程31x2-999x+892=0的两根,下列叙述何者正确()A.两根相异,且均为正根B.两根相异,且只有一个正根C.两根相同,且为正根D.两根相同,且为负根答案:A解析:解答:∵二次函数y=31x2-999x+892的图象与x轴有两个交点,且与x轴的正半轴相交,∴方程31x2-999x+892=0有两个正实根.所以选A.分析:由二次函数y=31x2-999x+892的图象得,方程31x2-999x+892=0有两个实根,两根都是正数,从而得出答案.11、已知函数y=(x-a)(x-b)(其中a>b)的图象如图所示,则函数y=ax+b的图象可能正确的是()ABCD答案:D解析:解答:根据图象可得出方程(x-a)(x-b)=0的两个实数根为a,b,且一正一负,负数的绝对值大∵a>b,∴a>0,b<0,∴函数y=ax+b的图象经过第一、三、四象限,所以选D.分析:根据图象可得出方程(x-a)(x-b)=0的两个实数根为a,b,且一正一负,负数的绝对值大,又a>b,则a>0,b<0.根据一次函数y=ax+b的图象的性质即可得出答案.12、已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2023的值为()A.2023 B.2023 C.2023 D.2023答案:B解析:解答:∵物线y=x2-x-1与x轴的交点为(m,0),∴将x=m,y=0代入抛物线解析式得:m2-m-1=0,∴m2-m=1,则m2-m+2023=1+2023=2023.所以选B分析:由抛物线y=x2-x-1与x轴的交点为(m,0),将此点代入抛物线解析式,整理后求出m2-m的值,代入所求式子即可求出值.13、抛物线y=-3x2-x+4与坐标轴的交点个数是()A.3 B.2 C.1 D.0答案:A解析:解答:令x=0,解得:y=4,∴抛物线与y轴的交点为(0,4),令y=0,得到-3x2-x+4=0,即3x2+x-4=0,△=b2-4ac=49>0∴抛物线与x轴有两个交点。综上,抛物线与坐标轴的交点个数为3.所以选A分析:令抛物线解析式中x=0,求出对应的y的值,即为抛物线与y轴交点的纵坐标,确定出抛物线与y轴的交点坐标,令抛物线解析式中y=0,得到关于x的一元二次方程,根据判别式大于0,可得出抛物线与x轴有两个交点,综上,得到抛物线与坐标轴的交点个数.14、下列哪一个函数,其图象与x轴有两个交点()A.y=(x-23)2+155 B.y=(x+23)2+155C.y=-(x-23)2-155 D.y=-(x+23)2+155分析:由题意得,令y=0,看是否解出x值,对A,B,C,D,一一验证从而得出答案.答案:D解析:解答:A、令y=0得,(x-23)2+155=0,移项得,(x-23)2=-155,方程无实根;B、令y=0得,(x+23)2+155=0,移项得,(x+23)2=-155,方程无实根;C、令y=0得,-(x-23)2-155=0,移项得,(x-23)2=-155,方程无实根;D、令y=0得,-(x+23)2+155=0,移项得,(x+23)2=155,方程有两个实根.所以选D.15、已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是()A.无实数根 B.有两个相等实数根C.有两个异号实数根 D.有两个同号不等实数根答案:D解析:解答:∵方程ax2+bx+c+2=0,∴ax2+bx+c=-2时,即y=-2求x的值,∵y=ax2+bx+c的图象顶点坐标的纵坐标是-3,由图象可知:有两个同号不等实数根.所以选D.分析:根据抛物线的顶点坐标的纵坐标为-3,判断方程ax2+bx+c+2=0的根的情况即是判断y=-2时x的值.二、填空题16、已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为____答案:-1或3解析:解答:由图像得二次函数y=-x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点坐标为(-1,0)∴关于x的一元二次方程-x2+2x+m=0的解为x1=-1或x2=3.分析:由二次函数y=-x2+2x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程-x2+2x+m=0的解.17、抛物线y=x2-4x+m与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是____答案:(3,0)解析:解答:把点(1,0)代入抛物线y=x2-4x+m中,得m=3,所以,原方程为y=x2-4x+3,令y=0,解方程x2-4x+3=0,得x1=1,x2=3∴抛物线与x轴的另一个交点的坐标是(3,0).分析:把交点坐标代入抛物线解析式求m的值,再令y=0解一元二次方程求另一交点的横坐标.18、二次函数y=x2-6x+n的部分图象如图所示,若关于x的一元二次方程x2-6x+n=0的一个解为x1=1,则另一个解x2=____答案:5解析:解答:把点(1,0)代入抛物线y=x2-6x+n中,得n=5,所以,原方程为y=x2-6x+5,令y=0,解方程x2-6x+5=0,得x1=1,x2=5∴另一个解x2=5.分析:把交点坐标代入抛物线解析式求n的值,再令y=0解一元二次方程求另一交点的横坐标.19、抛物线y=2x2+4x+m与x轴只有一个公共点,则m的值为____答案:2解析:解答:∵抛物线与x轴只有一个公共点,∴△=0,∴b2-4ac=42-4×2×m=0;∴m=2.分析:由抛物线y=2x2+4x+m与x轴只有一个公共点可知,对应的一元二次方程2x2+4x+m=0,根的判别式△=b2-4ac=0,由此即可得到关于m的方程,解方程即可求得m=2.20、如图,抛物线y=-x2+2x+m(m<0)与x轴相交于点A(x1,0)、B(x2,0),点A在点B的左侧.当x=x2-2时,y____0(填“>”“=”或“<”号).答案:<解析:解答:∵抛物线y=-x2+2x+m(m<0)与x轴相交于点A(x1,0)、B(x2,0),∴x1+x2=2,x1x2=-m>0,∴x1>0,x2>0,∵x1+x2=2∴x1=2-x2∴x=-x1<0∴y<0.分析:由二次函数根与系数的关系求得关系式,求得m小于0,当x=x2-2时,从而求得y小于0.三、计算题21、(1)请在坐标系中画出二次函数y=x2-2x的大致图象;(2)根据方程的根与函数图象的关系,将方程x2-2x=1的根在图上近似的表示出来(描点);(3)观察图象,直接写出方程x2-2x=1的根.(精确到)答案:见解析解析:解答:(1)如下图(2)正确作出点M,N;(3)写出方程的根为,.分析:(1)确定顶点坐标和与x轴y轴交点,作出图形;(2)方程x2-2x=1的根就是二次函数y=x2-2x的函数值为1时的横坐标x的值;(3)观察图象可知图象交点的横坐标即为方程的根.22、已知一元二次方程x2+px+q+1=0的一根为2.(1)求q关于p的关系式;(2)求证:抛物线y=x2+px+q与x轴有两个交点;答案:(1)q=-2p-5;(2)见解析解析:解答:(1)解:把x=2代入得22+2p+q+1=0,即q=-2p-5;(2)证明:∵△=p2-4q>0,由(1)得△=p2+4(2p+5)=p2+8p+20=(p+4)2+4>0,∴一元二次方程x2+px+q=0有两个不相等的实根.∴抛物线y=x2+px+q与x轴有两个交点;分析:(1)把x=2代入可求得q与p的关系式;(2)由△=b2-4ac可判断抛物线与x轴的交点情况;23、已知二次函数y=x2+2x+c的图象经过点(1,-5).(1)求c的值;(2)求函数图象与x轴的交点坐标.答案:(1)8;(2)(-4,0),(2,0)解析:解答:(1)∵点(1,-5)在y=x2+2x+c的图象上,∴-5=1+2+c,∴c=-8.(2)令y=0,则x2+2x-8=0,解方程得:x1=-4,x2=2.所以函数与轴的交点坐标为(-4,0),(2,0).分析:①二次函数解析式只有一个待定系数c,把点(1,-5)代入解析式即可求c;②已知二次函数解析式求函数图象与x轴的交点坐标,令y=0,解一元二次方程,可得交点的横坐标.24、已知y关于x的函数:y=(k-2)x2-2(k-1)x+k+1中满足k≤3.求证:此函数图象与x轴总有交点;答案:见解析解析:解答:分两种情况:(1)当k=2时,函数为y=-2x+3,图象与x轴有交点.(2)当k≠2时,△=4(k-1)2-4(k-2)(k+1)=-4k+12;因为k≤3,所以-4k+12≥0,所以△≥0,此时抛物线与x轴有交点.因此,k≤3时,y关于x的函数y=(k-2)x2-2(k-1)x+k+1的图象与x轴总有交点.分析:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论