下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
矩形的性质1.理解矩形的意义,知道矩形与平行四边形的区别与联系.2.掌握矩形的性质定理,会用性质定理进行有关的计算与证明.自学指导阅读课本P58~60,完成下列问题.知识探究1.在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.(1)随着∠α的变化,两条对角线的长度分别是怎样变化的?(2)当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作、思考、交流、归纳后得到矩形的性质.矩形性质1矩形的四个角都是直角.矩形性质2矩形的对角线相等.2.请同学们拿出准备好的矩形纸片,折一折,观察并思考.
(1)矩形是不是中心对称图形?如果是,那么对称中心是什么?(2)矩形是不是轴对称图形?如果是,那么对称轴有几条?解:(1)矩形是中心对称图形,对角线的交点是它的对称中心.(2)矩形是轴对称图形,它有两条对称轴.自学反馈1.矩形具有而一般平行四边形不具有的性质是(C)A.对角相等B.对边相等C.对角线相等D.对角线互相平分2.矩形是轴对称图形吗?如果是的话它有几条对称轴?解:既是轴对称图形,也是中心对称图形,对称轴有两条.3.请用所学的知识诊断下面的语句,若正确请在括号里打“√”,若“有病”请开药方:(1)矩形是特殊的平行四边形,特殊之处就是有一个角是直角.(√)(2)平行四边形是矩形.(×)(3)平行四边形具有的性质(如平行四边形的对边平行且相等;平行四边形的对角相等;平行四边形的对角线互相平分)矩形也具有.(√)活动1小组讨论例1如图,在矩形ABCD中,两条对角线相交于点O,∠AOB=60°,AC=4cm,求BC的长.证明:∵四边形ABCD是矩形,∴AC=BD(矩形的对角线相等),OA=OC=AC,OB=OD=BD.∴OA=OB.∵∠AOB=60°,∴△AOB是等边三角形.∴AB=AO=2.又∵∠DAB=90°(矩形的四个角都是直角),∴BC=.活动2跟踪训练1.矩形ABCD中,O是BC的中点,∠AOD=90°,矩形ABCD的周长为24cm,则AB的长为(D)A.1cmB.2cmC.D.4cm2.如图,矩形ABCD的对角线的交点为O,EF过点O且分别交AB,CD于点E,F,则图中阴影部分的面积是矩形ABCD的面积的(B)\f(1,5)\f(1,4)\f(1,3)\f(3,10)3.如图,在矩形ABCD中,以顶点B为圆心、边BC长为半径作弧,交AD边于点E,连接BE,过C点作CF⊥BE于F.求证:BF=AE.证明:在矩形ABCD中,AD∥BC,∠A=90°,∴∠AEB=∠FBC,∵CF⊥BE,∴∠BFC=∠A=90°,由作图可知,BC=BE,在△BFC和△EAB中,eq\b\lc\{(\a\vs4\al\co1(∠A=∠CFB,,∠AEB=∠FBC,,EB=BC,))∴△BFC≌△EAB(AAS),∴BF=AE.4.已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.证明:∵四边形ABCD是矩形,∴∠B=∠C=∠BAD=90°,AB=CD,∴∠BEF+∠BFE=90°.∵EF⊥ED,∴∠BEF+∠CED=90°.∴∠BFE=∠CED.∴∠BEF=∠EDC.在△EBF与△DCE中,eq\b\lc\{(\a\vs4\al\co1(∠BFE=∠CED,,EF=ED,,∠BEF=∠EDC,))∴△EBF≌△DCE(ASA).∴BE=CD.∴BE=AB.∴∠BAE=∠BEA=45°.∴∠EAD=45°.∴∠BA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物品转让协议书
- 数控加工合同(3篇)
- 钢材购销服合同(32篇)
- 四川省泸州市龙马潭区五校联考2024-2025学年七年级上学期11月期中生物学试题(含答案)
- 河南省南阳市2024-2025学年高三上学期期中考试历史试题(含答案)
- 高考语文复习五年高考语文知识点汇编:名篇名句默写
- 四川省高考语文五年试题汇编-古诗词赏析
- 电脑速记技能培训契约
- 2024年广西区公务员考试《行测》真题及答案解析
- 调研报告:政府投资项目招投标存在的问题及建议
- 四川公安基础知识模拟1
- 患者沟通技巧
- 18 牛和鹅 第一课时 课件
- 2024年宜宾人才限公司招聘高频难、易错点500题模拟试题附带答案详解
- DBT29-305-2024 天津市装配式建筑评价标准
- 冀教版七年级数学上册 2.6 角大小的比较(第二章 几何图形的初步认识 学习、上课课件)
- 创建“环保银行”(教学设计)-2024-2025学年四年级上册综合实践活动教科版
- 2024秋九年级英语上册 Module 3 Heroes Unit 3 Language in use教案(新版)外研版
- 《CSCO肿瘤相关性贫血临床实践指南(2024)》解读
- 人工肝技术护理
- 云南省2023年秋季学期期末普通高中学业水平考试信息技术(含答案解析)
评论
0/150
提交评论