




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
弹性动力学问题的建立第一页,共三十四页,2022年,8月28日第五章弹性动力学问题的建立5.1弹性动力学的基本方程5.2弹性动力学问题的提法5.3以位移表示的运动微分方程―拉梅(Lame)方程5.4圆柱坐标和球坐标系下以位移表示的运动微分方程第二页,共三十四页,2022年,8月28日弹性动力学问题的建立在前几章中我们介绍了弹性动力学的基本假设,分别研究了应力、应变及应力与应变的关系,得出了应力与位移,应变与位移及应力与应变之间分别满足的平衡或运动微分方程,几何方程以及物理方程(本构方程,广义虎克定律)。本章研究如何求解具体弹性动力学问题,包括:(1)说明弹性动力学的基本方程,进而明确弹性动力学问题的提法;(2)阐明解决弹性动力学问题的途径,并建立相应的方程。第三页,共三十四页,2022年,8月28日前面讨论中,主要讨论弹性静力学问题,即假定弹性体的任一微小部分始终处于静力平衡状态,位移,应变和应力只是位置函数,不随时间变化(运动微分方程考虑了时间)。在弹性动力学问题中,弹性体内各点的位移,应变和应力一般还随时间变化,因而,它们不仅是位置的函数,也是时间的函数。弹性动力学的基本方程但只要弹性动力学仍采用理想弹性体,微小位移和和自然状态假定,则针对弹性静力学建立的几何方程和物理方程都可运用于弹性动力学的任何一瞬间,形式上无须作任何改变,只需将平衡方程用运动方程来代替。第四页,共三十四页,2022年,8月28日弹性动力学问题中,15个基本方程为:(1)运动微分方程(应力与位移关系,3个)弹性动力学的基本方程(5-1)第五页,共三十四页,2022年,8月28日弹性动力学的基本方程(2)几何方程(应变与位移关系,6个)(5-2)第六页,共三十四页,2022年,8月28日弹性动力学的基本方程(3)物理方程(应力与应变关系,6个)(5-3)a(a)用应变表示应力第七页,共三十四页,2022年,8月28日弹性动力学的基本方程(3)物理方程(应力与应变关系,6个)(5-3)b(b)用应力表示应变第八页,共三十四页,2022年,8月28日弹性动力学的基本方程上述15个基本方程可求解15个未知数:即位移分量,六个应变分量和六个应力分量。这15个方程称为以直角坐标表示的弹性动力学基本方程。第九页,共三十四页,2022年,8月28日弹性动力学问题的提法求解弹性动力学问题,只有上述基本方程是不够的,因为基本方程只是反映物体的内部位移,应变和应力之间的相互关系,而对特定具体问题还必须考虑相应的初始和边界条件。第十页,共三十四页,2022年,8月28日1、初始条件给出弹性体内各个点在时间时位移分量和速度分量,即:(5-8)弹性动力学问题的提法第十一页,共三十四页,2022年,8月28日2、边界条件
弹性力学问题的边界条件有三种情况:(1)给出弹性体全部表面的面力分量,此时边界条件由应力边界条件表示,应力分量由力的边界条件公式给出。弹性动力学问题的提法第十二页,共三十四页,2022年,8月28日弹性动力学问题的提法(2)给出弹性体全部表面的位移分量,此时边界条件由位移边界条件表示,边界上位移与给定的位移相等,即由位移公式式给出。(3)混合边界条件,在弹性体一部分表面上给出了面力分量,而另一部分给出了位移分量。第十三页,共三十四页,2022年,8月28日弹性动力学问题的提法总之,弹性动力学的基本方程一般是控制弹性体内部的位移,应变和应力之间相互联系的普遍规律,而定解条件(初始和边界条件)具体给出了每一个边值—初值问题的特定规律。此外,在弹性波传播问题中,介质分界面处应力和位移连续。第十四页,共三十四页,2022年,8月28日3、弹性动力学问题严格且完整的提法
已知:a、弹性体的形状和尺寸,弹性体的物理性质(弹性和惯性);b、作用于弹性体上的体力;c、边界条件;d、初始条件。弹性动力学问题的提法应用15个基本方程求出初始瞬时(通常)时刻以后任一瞬时刻弹性体中各点的位移,应变和应力。第十五页,共三十四页,2022年,8月28日4、弹性动力学问题的简化及解题方法在解决弹性动力学问题过程中,15个基本方程可以综合简化,因为这些方程中,并非每个方程中都包括所有的未知函数,可以将其中一部分未知函数选作“基本未知函数”,先求出它们,然后再由它们求出其它未知数。弹性动力学问题的提法第十六页,共三十四页,2022年,8月28日以应力为“基本未知数”的解题方法称应力法,以位移为“基本未知数”的解题方法称位移法。相应地简化15个基本方程,分别导出应力满足的微分方程或位移满足的微分方程,以及它们相应的边界条件。在一定的边界条件和初始条件下,按选取的解题方法,求出其相应的微分方程的解,也就是满足全部基本方程。弹性动力学问题的提法第十七页,共三十四页,2022年,8月28日(1)应力法取物体内点的应力分量为基本未知量,先解出三个应力分量,再求相应的应变及位移,多用于弹性静力学问题。弹性动力学问题的提法第十八页,共三十四页,2022年,8月28日弹性动力学问题的提法(2)位移法取物体内点的位移为基本未知量,将各个方程中的应力和应变都用位移表示,先解出三个位移分量表达式,有了位移,就可以进一步求出应变和应力。在地震波动力学中,往往只需要求出位移就够了。基本做法:第十九页,共三十四页,2022年,8月28日弹性动力学问题的提法①利用几何方程(应变—位移),将物理方程中应变消去,即将应变用位移表示,物理方程变为应力与位移关系,这样从这12个方程中去掉6个方程,得到应力—位移关系方程,将其代入运动微分方程中得到以位移表示的运动微分方程(拉梅Lame方程)。第二十页,共三十四页,2022年,8月28日弹性动力学问题的提法②解位移形式的拉梅方程,求出位移分量,当然求解过程中要用到初始条件和由位移表示的边界条件。③求出位移后,按几何方程求出应变,代入物理方程中,再求出应力表达式。第二十一页,共三十四页,2022年,8月28日以位移表示的运动微分方程―拉梅(Lame)方程1、Lame方程推导
首先将几何方程式代入物理方程a,得:(5-9)第二十二页,共三十四页,2022年,8月28日以位移表示的运动微分方程―拉梅(Lame)方程(5-10)再将式(5-9)代入运动微分方程(5-1)中,整理得:上式中,为拉普拉斯算子。第二十三页,共三十四页,2022年,8月28日以位移表示的运动微分方程―拉梅(Lame)方程上式就是以位移表示的运动微分方程,称为拉梅(Lame)方程。分别乘以,并由,上式写成矢量形式,得:(5-11)式中:第二十四页,共三十四页,2022年,8月28日以位移表示的运动微分方程―拉梅(Lame)方程2、以位移分量表示的力的边界条件若弹性体表面处的位移给定,则可通过位移边界条件给出力的边界条件。若弹性体表面处面力给定,则取(5-12)第二十五页,共三十四页,2022年,8月28日以位移表示的运动微分方程―拉梅(Lame)方程等号右端用位移表示,才能用拉梅方程定解。将(5-9)代入(5-12)式即可得到:(5-13)其中第二十六页,共三十四页,2022年,8月28日以位移表示的运动微分方程―拉梅(Lame)方程3、弹性动力学解的唯一性弹性动力学解的唯一性可表述为:若弹性体受已知体力作用,在物体表面处,或者面力已知,或者位移已知;此外,初始条件已知,则弹性体在运动时,体内各点的应力分量,应变分量与位移分量均是唯一的。第二十七页,共三十四页,2022年,8月28日以位移表示的运动微分方程―拉梅(Lame)方程弹性动力学的唯一定理,为弹性动力学问题常用的逆解法和半逆解法提供一个理论依据。逆解法和半逆解法也称试凑法。如果试凑得不到真正的解,也会逐次逼近,得到比前次更为精确的近似解。此外还有变分法、数值方法求近似解,数值方法中有限差分和有限元法已在地震勘探中广泛应用。第二十八页,共三十四页,2022年,8月28日圆柱坐标和球坐标系下以位移表示的运动微分方程1、圆柱坐标系下运动微分方程―拉梅(Lame)方程
也是在15个基本方程中消去应力和应变分量,得到圆柱坐标中以位移表示的运动微分方程(5-14)第二十九页,共三十四页,2022年,8月28日圆柱坐标和球坐标系下以位移表示的运动微分方程(5-14)式中分别为沿方向的位移分量,而体积应变和转动分量为:第三十页,共三十四页,2022年,8月28日圆柱坐标和球坐标系下以位移表示的运动微分方程2、球对称问题
(1)运动微分方程(2)几何方程(a)(b)第三十一页,共三十四页,2022年,8月28日圆柱坐标和球坐标系下以位移表示的运动微分方程(3)物理方程(c)将(b)式代人(c)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业财务合同范本
- 深圳市房产转让合同范本
- 城市土地开发和商品房借款合同书
- 2025探讨分期付款买卖合同中的期待权
- 反恐普法教育主题班会
- 陪诊师考试友善互动试题及答案
- 马工学的初心与使命探讨试题及答案
- 个人施工合作合同标准文本
- 2025年度毛绒玩具采购合同
- 2025聘请安保服务合同
- 第十三届全国交通运输行业城市轨道交通列车司机(学生组)职业技能大赛技术方案
- 同煤集团巷道支护理论计算设计方法(初稿)
- 出院患者随访话术培训
- T∕CACM 1021.19-2018 中药材商品规格等级 白芷
- 2024年3月30日事业单位联考D类《职业能力倾向测验》试题
- 配电设备采购及安装方案
- 七年级数学竞赛试题(含答案)
- 2024【小学组】汉字听写大会竞赛考试题库(含答案)
- 新高考背景下高考数学重点板块分析与教学建议课件
- 22《桃花源记》对比阅读-2024-2025中考语文文言文阅读专项训练(含答案)
- 《火针疗法》课件
评论
0/150
提交评论