第四章时间序列分析简介_第1页
第四章时间序列分析简介_第2页
第四章时间序列分析简介_第3页
第四章时间序列分析简介_第4页
第四章时间序列分析简介_第5页
已阅读5页,还剩92页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章时间序列分析第一节随机过程、时间序列第二节时间序列模型的分类第三节自相关函数第四节偏自相关函数第五节时间序列模型的建立与预测

时间序列分析方法由Box-Jenkins(1976)年提出。它适用于各种领域的时间序列分析。时间序列模型不同于经济计量模型的两个特点是:⑴这种建模方法不以经济理论为依据,而是依据变量自身的变化规律,利用外推机制描述时间序列的变化。⑵明确考虑时间序列的非平稳性。如果时间序列非平稳,建立模型之前应先通过差分把它变换成平稳的时间序列,再考虑建模问题。

第一节随机过程、时间序列

为什么在研究时间序列之前先要介绍随机过程?就是要把时间序列的研究提高到理论高度来认识。时间序列不是无源之水。它是由相应随机过程产生的。只有从随机过程的高度认识了它的一般规律。对时间序列的研究才会有指导意义。对时间序列的认识才会更深刻。自然界中事物变化的过程可以分成两类。一类是确定型过程,一类是非确定型过程。确定型过程即可以用关于时间t的函数描述的过程。例如,真空中的自由落体运动过程,电容器通过电阻的放电过程,行星的运动过程等。非确定型过程即不能用一个(或几个)关于时间t的确定性函数描述的过程。换句话说,对同一事物的变化过程独立、重复地进行多次观测而得到的结果是不相同的。例如,对河流水位的测量。其中每一时刻的水位值都是一个随机变量。如果以一年的水位纪录作为实验结果,便得到一个水位关于时间的函数xt。这个水位函数是预先不可确知的。只有通过测量才能得到。而在每年中同一时刻的水位纪录是不相同的。

第二节时间序列模型的分类条件?

问题的提出:如何判别其是自回归过程还是移动平均过程?如何判别其过程的阶数呢?如何通过一个时间序列研究其过程的平稳性呢?

第三节自相关函数则(4.35)式的通解(证明见附录)是

k=A1G1k+A2G2k+…+ApGpk.(4.36)其中Ai,i=1,…p为待定常数。这里

Gi-1,i=1,2,…,p

是特征方程(L)=(1-1L-2L2-…-pLp)=0的根。第四节偏自相关函数第五节时间序列模型的建立与预测1.模型的识别

2.模型参数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论