2023届山东省青岛市西海岸新区6中重点达标名校十校联考最后数学试题含解析_第1页
2023届山东省青岛市西海岸新区6中重点达标名校十校联考最后数学试题含解析_第2页
2023届山东省青岛市西海岸新区6中重点达标名校十校联考最后数学试题含解析_第3页
2023届山东省青岛市西海岸新区6中重点达标名校十校联考最后数学试题含解析_第4页
2023届山东省青岛市西海岸新区6中重点达标名校十校联考最后数学试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列图案中,是轴对称图形的是()A. B. C. D.2.如图所示的几何体,它的左视图与俯视图都正确的是()A. B. C. D.3.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为A.80° B.50° C.30° D.20°4.如图,由四个正方体组成的几何体的左视图是()A. B. C. D.5.已知下列命题:①对顶角相等;②若a>b>0,则<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为()A. B. C. D.6.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是()A.68° B.20° C.28° D.22°7.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是()A.红花、绿花种植面积一定相等B.紫花、橙花种植面积一定相等C.红花、蓝花种植面积一定相等D.蓝花、黄花种植面积一定相等8.(2017•鄂州)如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.127B.247C.489.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。同学们,你能补出这个常数吗?它应该是(

)A.2

B.3

C.4

D.510.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC=.12.函数y=2xx+5的自变量x13.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.14.如果,那么______.15.一组数据10,10,9,8,x的平均数是9,则这列数据的极差是_____.16.在线段AB上,点C把线段AB分成两条线段AC和BC,如果,那么点C叫做线段AB的黄金分割点.若点P是线段MN的黄金分割点,当MN=1时,PM的长是_____.17.用一张扇形纸片围成一个圆锥的侧面(接缝处不计),若这个扇形纸片的面积是90πcm2,围成的圆锥的底面半径为15cm,则这个圆锥的母线长为_____cm.三、解答题(共7小题,满分69分)18.(10分)某校组织了一次初三科技小制作比赛,有A.B.C,D四个班共提供了100件参赛作品.C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图l和图2两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?(4)将写有A,B,C,D四个字母的完全相同的卡片放入箱中,从中一次随机抽出两张卡片,求抽到A,B两班的概率.19.(5分)计算:()-1+()0+-2cos30°.20.(8分)如图,已知:正方形ABCD,点E在CB的延长线上,连接AE、DE,DE与边AB交于点F,FG∥BE交AE于点G.(1)求证:GF=BF;(2)若EB=1,BC=4,求AG的长;(3)在BC边上取点M,使得BM=BE,连接AM交DE于点O.求证:FO•ED=OD•EF.21.(10分)如图,在平行四边形ABCD中,BD是对角线,∠ADB=90°,E、F分别为边AB、CD的中点.(1)求证:四边形DEBF是菱形;(2)若BE=4,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,则PF+PM的最小值为,并在图上标出此时点P的位置.22.(10分)为了解某市市民上班时常用交通工具的状况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如图所示的尚不完整的统计图:根据以上统计图,解答下列问题:本次接受调查的市民共有人;扇形统计图中,扇形B的圆心角度数是;请补全条形统计图;若该市“上班族”约有15万人,请估计乘公交车上班的人数.23.(12分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.求y与x之间的函数关系式;直接写出当x>0时,不等式x+b>的解集;若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.24.(14分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:).

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】

根据轴对称图形的定义,逐一进行判断.【详解】A、C是中心对称图形,但不是轴对称图形;B是轴对称图形;D不是对称图形.故选B.【点睛】本题考查的是轴对称图形的定义.2、D【解析】试题分析:该几何体的左视图是边长分别为圆的半径和直径的矩形,俯视图是边长分别为圆的直径和半径的矩形,故答案选D.考点:D.3、D【解析】试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.考点:平行线的性质;三角形的外角的性质.4、B【解析】从左边看可以看到两个小正方形摞在一起,故选B.5、B【解析】∵①对顶角相等,故此选项正确;②若a>b>0,则<,故此选项正确;③对角线相等且互相垂直平分的四边形是正方形,故此选项错误;④抛物线y=x2﹣2x与坐标轴有2个不同交点,故此选项错误;⑤边长相等的多边形内角不一定都相等,故此选项错误;∴从中任选一个命题是真命题的概率为:.故选:B.6、D【解析】试题解析:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D.7、C【解析】

图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.【详解】解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.故选择C.【点睛】本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.8、D【解析】解:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,FC=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,FC⊥BC,∴FH=FC,易证△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由题意AD=DC=4,设BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由①②可得y=207,∴S△ABE=12×5×207点睛:本题考查直角梯形的性质、全等三角形的判定和性质、角平分线的性质定理、勾股定理、二元二次方程组等知识,解题的关键是学会添加常用辅助线,学会利用参数,构建方程解决问题,属于中考压轴题.9、D【解析】

设这个数是a,把x=1代入方程得出一个关于a的方程,求出方程的解即可.【详解】设这个数是a,把x=1代入得:(-2+1)=1-,∴1=1-,解得:a=1.故选:D.【点睛】本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a的方程是解此题的关键.10、C【解析】分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.详解:∵OB=1,AB⊥OB,点A在函数(x<0)的图象上,∴当x=−1时,y=2,∴A(−1,2).∵此矩形向右平移3个单位长度到的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数(x>0)的图象上,∴k=4,∴反比例函数的解析式为,O1(3,0),∵C1O1⊥x轴,∴当x=3时,∴P故选C.点睛:考查反比例函数图象上点的坐标特征,坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.二、填空题(共7小题,每小题3分,满分21分)11、1+【解析】试题分析:连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的长;过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.解:连接AB,则AB为⊙M的直径.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.过B作BD⊥OC于D.Rt△OBD中,∠COB=45°,则OD=BD=OB=.Rt△BCD中,∠OCB=60°,则CD=BD=1.∴OC=CD+OD=1+.故答案为1+.点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.12、x≠﹣1【解析】

根据分母不等于2列式计算即可得解.【详解】解:根据题意得x+1≠2,解得x≠﹣1.故答案为:x≠﹣1.【点睛】考查的知识点为:分式有意义,分母不为2.13、.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.14、;【解析】

先对等式进行转换,再求解.【详解】∵∴3x=5x-5y∴2x=5y∴【点睛】本题考查的是分式,熟练掌握分式是解题的关键.15、1【解析】

先根据平均数求出x,再根据极差定义可得答案.【详解】由题意知=9,解得:x=8,∴这列数据的极差是10-8=1,故答案为1.【点睛】本题主要考查平均数和极差,熟练掌握平均数的计算得出x的值是解题的关键.16、【解析】

设PM=x,根据黄金分割的概念列出比例式,计算即可.【详解】设PM=x,则PN=1-x,

由得,,

化简得:x2+x-1=0,

解得:x1=,x2=(负值舍去),

所以PM的长为.【点睛】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.17、1【解析】

设这个圆锥的母线长为xcm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•15•x=90π,然后解方程即可.【详解】解:设这个圆锥的母线长为xcm,根据题意得•2π•15•x=90π,解得x=1,即这个圆锥的母线长为1cm.故答案为1.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.三、解答题(共7小题,满分69分)18、(1)25件;(2)见解析;(3)B班的获奖率高;(4)16【解析】试题分析:(1)直接利用扇形统计图中百分数,进而求出B班参赛作品数量;(2)利用C班提供的参赛作品的获奖率为50%,结合C班参赛数量得出获奖数量;(3)分别求出各班的获奖百分率,进而求出答案;(4)利用树状统计图得出所有符合题意的答案进而求出其概率.试题解析:(1)由题意可得:100×(1﹣35%﹣20%﹣20%)=25(件),答:B班参赛作品有25件;(2)∵C班提供的参赛作品的获奖率为50%,∴C班的参赛作品的获奖数量为:100×20%×50%=10(件),如图所示:;(3)A班的获奖率为:14100×35%×100%=40%,B班的获奖率为:11C班的获奖率为:1020=50%;D班的获奖率为:8故C班的获奖率高;(4)如图所示:,故一共有12种情况,符合题意的有2种情况,则从中一次随机抽出两张卡片,求抽到A、B两班的概率为:212=1考点:1.列表法与树状图法;2.扇形统计图;3.条形统计图.19、4+2.【解析】

原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.【详解】原式=3+1+3-2×=4+2.20、(1)证明见解析;(2)AG=;(3)证明见解析.【解析】

(1)根据正方形的性质得到AD∥BC,AB∥CD,AD=CD,根据相似三角形的性质列出比例式,等量代换即可;(2)根据勾股定理求出AE,根据相似三角形的性质计算即可;(3)延长GF交AM于H,根据平行线分线段成比例定理得到,由于BM=BE,得到GF=FH,由GF∥AD,得到,等量代换得到,即,于是得到结论.【详解】解:(1)∵四边形ABCD是正方形,∴AD∥BC,AB∥CD,AD=CD,∵GF∥BE,∴GF∥BC,∴GF∥AD,∴,∵AB∥CD,,∵AD=CD,∴GF=BF;(2)∵EB=1,BC=4,∴=4,AE=,∴=4,∴AG=;(3)延长GF交AM于H,∵GF∥BC,∴FH∥BC,∴,∴,∵BM=BE,∴GF=FH,∵GF∥AD,∴,,∴,∴,∴FO•ED=OD•EF.【点睛】本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等.21、(1)详见解析;(2).【解析】

(1)根据直角三角形斜边上的中线等于斜边的一半,以及平行四边形的对边相等证明四边形DEBF的四边相等即可证得;(2)连接EM,EM与BD的交点就是P,FF+PM的最小值就是EM的长,证明△BEF是等边三角形,利用三角函数求解.【详解】(1)∵平行四边形ABCD中,AD∥BC,∴∠DBC=∠ADB=90°.∵△ABD中,∠ADB=90°,E时AB的中点,∴DE=AB=AE=BE.同理,BF=DF.∵平行四边形ABCD中,AB=CD,∴DE=BE=BF=DF,∴四边形DEBF是菱形;(2)连接BF.∵菱形DEBF中,∠DEB=120°,∴∠EFB=60°,∴△BEF是等边三角形.∵M是BF的中点,∴EM⊥BF.则EM=BE•sin60°=4×=2.即PF+PM的最小值是2.故答案为:2.【点睛】本题考查了菱形的判定与性质以及图形的对称,根据菱形的对称性,理解PF+PM的最小值就是EM的长是关键.22、(1)1;(2)43.2°;(3)条形统计图如图所示:见解析;(4)估计乘公交车上班的人数为6万人.【解析】

(1)根据D组人数以及百分比计算即可.(2)根据圆心角度数=360°×百分比计算即可.(3)求出A,C两组人数画出条形图即可.(4)利用样本估计总体的思想解决问题即可.【详解】(1)本次接受调查的市民共有:50÷25%=1(人),故答案为1.(2)扇形统计图中,扇形B的圆心角度数=360°×=43.2°;故答案为:43.2°(3)C组人数=1×40%=80(人),A组人数=1﹣24﹣80﹣50﹣16=30(人).条形统计图如图所示:(4)15×40%=6(万人).答:估计乘公交车上班的人数为6万人.【点睛】本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23、(1);(2)x>1;(3)P(﹣,0)或(,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论