下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省梅州市梅南中学2021-2022学年高一数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下面几何体中,过轴的截面一定是圆面的是(
)A.圆柱
B.圆锥
C.球
D.圆台参考答案:C2.要得到函数y=cosx的图象,只需将函数y=sin(2x+)的图象上所有的点的(
).A.横坐标缩短到原来的倍(纵坐标不变),再向左平行移动个单位长度B.横坐标缩短到原来的倍(纵坐标不变),再向右平行移动个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动个单位长度D.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动个单位长度参考答案:C3.设,则下列不等式成立的是(
)A.若,则
B.若,则
C.若,则
D.若,则 参考答案:A4.在△ABC中,角A、B、C所对的边分别为a、b、c,若a?cosA=bcosB,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形参考答案:C试题分析:利用正弦定理由a?cosA=bcosB可得sinAcosA=sinBcosB,再利用二倍角的正弦即可判断△ABC的形状.解:在△ABC中,∵a?cosA=bcosB,∴由正弦定理得:sinAcosA=sinBcosB,即sin2A=sin2B,∴2A=2B或2A=π﹣2B,∴A=B或A+B=,∴△ABC的形状为等腰三角形或直角三角形.故选:C.考点:三角形的形状判断.5.在△ABC中,BC=6,若G,O分别为△ABC的重心和外心,且=6,则△ABC的形状是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.上述三种情况都有可能 参考答案:C【考点】平面向量数量积的运算. 【专题】平面向量及应用. 【分析】在△ABC中,G,O分别为△ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,运用重心和外心的性质,运用向量的三角形法则和中点的向量形式,以及向量的平方即为模的平方,可得2﹣=﹣36,又BC=6,则有||=||2+||2,运用勾股定理逆定理即可判断三角形的形状. 【解答】解:在△ABC中,G,O分别为△ABC的重心和外心, 取BC的中点为D,连接AD、OD、GD,如图: 则OD⊥BC,GD=AD, ∵,, 由=6, 则()==﹣()=6, 即﹣()()=6,则, 又BC=6, 则有||=||2+||2, 即有C为直角. 则三角形ABC为直角三角形. 故选:C. 【点评】本题考查向量的数量积的性质和运用,主要考查向量的三角形法则和向量的平方即为模的平方,运用勾股定理逆定理判断三角形的形状. 6.已知A=B=R,x∈A,y∈B,f:x→y=ax+b是从A到B的映射,若1和8的原象分别是3和10,则5在f下的象是(
)A.3 B.4 C.5 D.6参考答案:A【考点】映射.【专题】简易逻辑.【分析】A=B=R,x∈A,y∈B,f:x→y=ax+b是从A到B的映射,1和8的原象分别是3和10,可以根据象与原像的关系满足f(x)=ax+b,列出不等式求出a,b的值,进而得到答案.【解答】解:A=B=R,x∈A,y∈B,f:x→y=ax+b是从A到B的映射,又1和8的原象分别是3和10,∴,解得:,即f:x→y=x﹣25在f下的象可得f(5)=1×5﹣2=3,故选A;【点评】此题主要考查映射的定义及其应用,注意象与原象的对应关系,此题是一道基础题;7.设偶函数f(x)的定义域为R,函数g(x)=,则下列结论中正确的是()A.|f(x)|g(x)是奇函数 B.f(x)g(x)是偶函数C.f(x)|g(x)|是奇函数 D.|f(x)g(x)|是奇函数参考答案:A【考点】函数奇偶性的性质.【分析】由题意可得,|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,从而得出结论.【解答】解:f(x)是偶函数f(x),函数g(x)=是奇函数,∴|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得f(x)g(x)为奇函数,|f(x)|g(x)为奇函数,故选:A.8.下列函数中,最小值为4的是
A.
B.C.
D.参考答案:C9.已知是等差数列,,则过点的直线的斜率为(
)A.4
B.
C.-4
D.参考答案:A10.运行如图的程序,若输入的数为1,则输出的数是()A.﹣2 B.0 C.1 D.3参考答案:D【考点】伪代码;程序框图.【专题】计算题;阅读型;分类讨论;算法和程序框图.【分析】模拟执行程序代码,可得程序的功能是计算并输出y=,由x=1满足条件x≥0,执行输出y=2x+1即可得解.【解答】解:模拟执行程序代码,可得程序的功能是计算并输出y=,x=1,满足条件a≥0,执行y=2x+1=3,输出y的值为3.故选:D.【点评】本题考查的知识点是条件结构,其中根据已知分析出程序的功能是解答的关键,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.若函数,对任意实数,都有,且,则实数的值等于
.参考答案:-5或-1略12.若二次函数和使得在上是增函数的条件是__________________.参考答案:且略13.若直线的倾斜角为钝角,则实数的取值范围是
▲
参考答案:14.已知是一次函数,满足,则________.参考答案:略15.某校老年、中年和青年教师的人数分别为90,180,160,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有32人,则抽取的样本中老年教师的人数为_____参考答案:54【分析】根据分层抽样的定义建立比例关系,即可得到答案。【详解】设抽取的样本中老年教师的人数为,学校所有的中老年教师人数为270人由分层抽样的定义可知:,解得:故答案为54【点睛】本题考查分层抽样,考查学生的计算能力,属于基础题。16.函数的定义域是
.参考答案:17.不等式组的解为_______________参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.动点P从边长为1的正方形ABCD的顶点出发顺次经过B、C、D再回到A;设表示P点的行程,表示PA的长,求关于的函数解析式.参考答案:解析:显然当P在AB上时,PA=;当P在BC上时,PA=;当P在CD上时,PA=;当P在DA上时,PA=,再写成分段函数的形式.19.(本小题满分12分)已知是常数),且(为坐标原点).(1)求关于的函数关系式;(2)若时,的最大值为4,求的值;(3)在满足(2)的条件下,说明的图象可由的图象如何变化而得到?参考答案:(1),所以
(2),因为所以,当即时取最大值3+,所以3+=4,=1(3)①将的图象向左平移个单位得到函数的图象;②将函数的图象保持纵坐标不变,横坐标缩短为原来的得到函数的图象;③将函数的图象保持横坐标不变,纵坐标伸长为原来的2倍得到函数的图象;④将函数的图象向上平移2个单位,得到函数+2的图象20.已知函数,①用定义法判断的单调性。
②若当时,恒成立,求实数的取值范围参考答案:(1)定义域为R,任取21.已知圆:,点,直线.(1)求与圆相切,且与直线垂直的直线方程;(2)在直线上(为坐标原点),存在定点(不同于点),满足:对于圆上的任一点,都有为一常数,试求出所有满足条件的点的坐标.参考答案:(1)设所求直线方程为,即.由直线与圆相切,可知,得,故所求直线方程为
…………5分(2)方法1:假设存在这样的点,
当为圆与轴左交点时,,
当为圆与轴右交点时,依题意,,解得(舍去),或.……8分下面证明:点对于圆上任一点,都有为一常数.设,则.,从而为常数.
…………14分方法2:假设存在这样的点,使得为常数,则,于是,将代入得,,即对恒成立,所以,解得或(舍去),故存在点对于圆上任一点,都有为一常数.
………………14分略22.已知||=||=6,向量与的夹角为.(1)求|+|,|﹣|;(2)求+与﹣的夹角.参考答案:【考点】9S:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年环保技术与设备购销合同
- 2024年版餐厅后厨管理合同2篇
- 《走上辩论台》教案
- 2024年广告创意设计与执行合同模板3篇
- 小学生语文学习计划
- 存量房买卖合同(15篇)
- 中国转椅坐垫项目投资可行性研究报告
- 体育工作计划范文合集五篇
- 员工安全生产承诺书
- 网络大学生实习报告合集7篇
- 2024年度通信设备维修服务合同范本3篇
- 安恒可信数据空间建设方案 2024
- 2024年学校与家长共同促进家校合作发展协议3篇
- C预应力锚索框架梁施工方案(完整版)
- 参加团干部培训心得体会
- 中华民族共同体概论专家讲座第一讲中华民族共同体基础理论
- 湖北省襄阳市2023-2024学年高一上学期期末考试化学试题(含答案)
- 浙江省金华市十校2023-2024学年高一上学期1月期末考试物理试题 含解析
- 物业管理师考试题库单选题100道及答案解析
- 校园智能安防系统安装合同
- 2024年专利代理人专利法律知识考试试卷及参考答案
评论
0/150
提交评论