下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省梅州市合水中学2022-2023学年高一数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在△ABC中,(a,b,c分别为角A、B、C的对边),则△ABC的形状为(
)A.等边三角形 B.直角三角形C.等腰三角形或直角三角形 D.等腰直角三角形参考答案:B【分析】利用二倍角公式,正弦定理,结合和差公式化简等式得到,得到答案.【详解】故答案选B【点睛】本题考查了正弦定理,和差公式,意在考查学生的综合应用能力.2.已知||=1,||=2,∠AOB=150°,点C在∠AOB的内部且∠AOC=30°,设=m+n,则=()A. B.2 C. D.1参考答案:B【考点】向量在几何中的应用.【专题】计算题;数形结合;向量法;平面向量及应用.【分析】可画出图形,由可得到,根据条件进行数量积的运算便可得到,从而便可得出关于m,n的等式,从而可以求出.【解答】解:如图,由的两边分别乘以得:;∴;∴得:;∴;∴.故选:B.【点评】考查向量夹角的概念,向量的数量积的运算及其计算公式.3.平行六面体中,既与共面也与共面的棱的条数为(
)
A、2
B、3
C、4
D、5参考答案:D4.下列两个变量之间的关系不是函数关系的是(
)A.出租车车费与出租车行驶的里程B.商品房销售总价与商品房建筑面积C.铁块的体积与铁块的质量D.人的身高与体重参考答案:D【分析】根据函数的概念来进行判断。【详解】对于A选项,出租车车费实行分段收费,与出租车行驶里程成分段函数关系;对于B选项,商品房的销售总价等于商品房单位面积售价乘以商品房建筑面积,商品房销售总价与商品房建筑面积之间是一次函数关系;对于C选项,铁块的质量等于铁块的密度乘以铁块的体积,铁块的体积与铁块的质量是一次函数关系;对于D选项,有些人又高又瘦,有些人又矮又胖,人的身高与体重之间没有必然联系,因人而异,D选项中两个变量之间的关系不是函数关系。故选:D。【点睛】本题考查函数概念的理解,充分理解两个变量之间是“一对一”或“多对一”的形式,考查学生对这些概念的理解,属于基础题。5.将函数的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是(
)
(A)
(B)(C)
(D)参考答案:C略6.(5分)下列函数中与函数y=x表示同一函数的是() A. y=()2 B. y= C. y= D. y=参考答案:C考点: 判断两个函数是否为同一函数.专题: 函数的性质及应用.分析: 确定函数的三要素是:定义域、对应法则和值域,据此可判断出答案.解答: 解:C.∵=x,与已知函数y=x的定义域和对应法则完全一样,∴二者是同一函数.故选C.点评: 本题考查了函数的定义,利用确定函数的三要素即可判断出.7.函数f(x)=x5+x3的图象关于()对称(). A.y轴 B.直线y=xC.坐标原点
D.直线y=-x参考答案:B略8.已知定义域为的函数满足,则时,单调递增,若,且,则与0的大小关系是(
)A.
B.C.D.参考答案:C略9.设是关于的方程(m为常数)的两根,则的值为A.4
B.2
C.
D.参考答案:A10.已知a=sin80°,,,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a参考答案:B【考点】对数值大小的比较.【分析】利用三角函数的单调性、指数函数与对数函数的单调性即可得出.【解答】解:a=sin80°∈(0,1),=2,<0,则b>a>c.故选:B.二、填空题:本大题共7小题,每小题4分,共28分11.设向量=(1,﹣1),=(﹣1,2),则(2+)·=
.参考答案:1【考点】平面向量的坐标运算.【分析】求出2+的坐标,从而求出其和的乘积即可.【解答】解:∵,,∴2+=(2,﹣2)+(﹣1,2)=(1,0),∴=1,故答案为:1.12.已知为右图所示的直角边长为1的等腰直角三角形,各边上的点在映射的作用下形成的新图形为,那么的面积为__________参考答案:113.集合,它们之间的包含关系是________________.参考答案:略14.已知是定义在上的奇函数,当时,,则时,
.参考答案:15.若三点P(1,1),A(2,-4),B(x,9)共线,则x=__________参考答案:3略16.一个几何体的三视图如图所示(单位:m),则该几何体的体积为
m3.参考答案:该几何体是由两个高为1的圆锥与一个高为2的圆柱组合而成,所以该几何体的体积为.考点:本题主要考查三视图及几何体体积的计算.17.在△ABC中,已知,则△ABC的形状为
.参考答案:等腰三角形略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知为常数,若求的值。参考答案:略19.数列{an}的前n项和为Sn,,且成等差数列.(1)求的值;(2)证明为等比数列,并求数列{an}的通项公式;(3)设,若对任意的,不等式恒成立,试求实数的取值范围.参考答案:(1);(2)见解析;(3)[1,+∞).【分析】,,又成等差数列,解得,当时,得到,代入化简,即可证得结果由得,代入化简得,讨论的取值并求出结果【详解】(1)在中令,得即,①
又
②则由①②解得.
(2)当时,由,得到则
又,则是以为首项,为公比的等比数列,,即.(3)当恒成立时,即()恒成立设(),当时,恒成立,则满足条件;当时,由二次函数性质知不恒成立;当时,由于对称轴
,则在上单调递减,恒成立,则满足条件,综上所述,实数λ的取值范围是.【点睛】本题考查了数列的综合题目,在求通项时可以采用的方法来求解,在求数列不等式时将其转化为含有参量的一元二次不等式问题,然后进行分类讨论求出结果。20.(14分)若函数f(x)在定义域D内某区间1上是增函数,而F(x)=在1上是减函数,则称寒素y=f(x)在1上是“弱增函数”(1)请分析判断函数f(x)=x﹣4,g(x)=﹣x2+4x在区间(1,2)上是否是“弱增函数”,并简要说明理由(2)若函数h(x)=x2﹣(sinθ﹣)x﹣b(θ,b是常数),在(0,1]上是“弱增函数”,请求出θ及b应满足的条件.参考答案:考点: 利用导数研究函数的单调性.专题: 函数的性质及应用;导数的综合应用;三角函数的图像与性质.分析: (1)根据“弱增函数”的定义,判断f(x)、g(x)在(1,2)上是否满足条件即可;(2)根据“弱增函数”的定义,得出①h(x)在(0,1)上是增函数,在(0,1)上是减函数,列出不等式组,求出b与θ的取值范围.解答: 解:(1)由于f(x)=x﹣4在(1,2)上是增函数,且F(x)==1﹣在(1,2)上也是增函数,所以f(x)=x﹣4在(1,2)上不是“弱增函数”…(2分)g(x)=﹣x2+4x在(1,2)上是增函数,但=﹣x+4在(1,2)上是减函数,所以g(x)=﹣x2+4x在(1,2)上是“弱增函数”…(4分)(2)设h(x)=x2﹣(sinθ﹣)x﹣b(θ、b是常数)在(0,1)上是“弱增函数”,则①h(x)=x2﹣(sinθ﹣)x﹣b在(0,1)上是增函数,由h(x)=x2﹣(sinθ﹣)x﹣b在(0,1)上是增函数得≤0,…(6分)∴sinθ≤,θ∈(k∈Z);
…(8分)②H(x)==x﹣+﹣sinθ在(0,1)上是减函数,记G(x)=x﹣,在(0,1)上任取0<x1<x2≤1,则G(x1)﹣G(x2)=(x1x2+b)>0恒成立,…(11分)又∵<0,∴x1x2+b<0恒成立,而当0<x1<x2≤1时,0<x1x2<1,∴b≤﹣1;(如果直接利用双沟函数的结论扣2分)∴b≤﹣1;且θ∈(k∈Z)时,h(x)在(0,1]上是“弱增函数”.…(14分)点评: 本题考查了三角函数的图象与性质的应用问题,也考查了函数与导数的应用问题,考查了新定义的应用问题,考查了分析与解决问题的能力,是综合性题目.21.判断一次函数反比例函数,二次函数的单调性。参考答案:解析:当,在是增函数,当,在是减函数;当,在是减函数,当,在是增函数;当,在是减函数,在是增函数,当,在是增函数,在是减函数。22.
如图所示,已知M、N分别是AC、AD的中点,BCCD.(I)求证:MN∥平面BCD;(II)求证:平面BCD平面ABC;(III)若AB=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《营养膳食与卫生》课程标准
- 《行政职业能力测验》山西省晋城市高平市2024年公务员考试模拟试题含解析
- 2024年农研所上半年工作总结
- 《知情保密原则》课件
- 《华为战略管理》课件
- 《车辆运行安全管理》课件
- 2019年高考语文试卷(新课标Ⅱ卷)(解析卷)
- 康复口腔科护士的职业发展
- 2023-2024年项目部安全管理人员安全培训考试题综合题
- 2024企业主要负责人安全培训考试题附答案(综合题)
- 2025初级会计职称《初级会计实务》全真模拟试及答案解析(3套)
- 2025年1月山西、陕西、宁夏、青海普通高等学校招生考试适应性测试(八省联考)历史试题 含解析
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之6:“4组织环境-4.4创新管理体系”(雷泽佳编制-2025B0)
- 2024-2030年撰写:中国汽车半轴行业发展趋势及竞争调研分析报告
- 北疆文化全媒体传播体系的构建与实践
- 2025届福建省厦门市重点中学高三第二次联考语文试卷含解析
- OpenCV计算机视觉基础教程(Python版)教学教案
- 期末 (试题) -2024-2025学年人教PEP版英语六年级上册
- 上海春季高考英语真题试题word精校版(含答案)
- 应急照明装置安装施工方法
- 静力触探技术标准
评论
0/150
提交评论