下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省揭阳市锡场中学2021年高一数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设集合集合,则集合(
)A.
B.
C.
D.参考答案:C略2.函数f(x)=2x﹣的零点所在的区间可能是()A.(1,+∞) B.(,1) C.(,) D.(,)参考答案:B【考点】函数零点的判定定理.【分析】将函数的零点问题转化为求两个函数的交点问题,结合函数的图象及性质容易解出.【解答】解:令f(x)=0,∴2x=,令g(x)=2x,h(x)=,∵g()=,g(1)=2,h()=2,h(1)=1,结合图象:∴函数h(x)和g(x)的交点在(,1)内,∴函数f(x)的零点在(,1)内,故选:B.3.边长为5,7,8的三角形的最大角与最小角的和为()A. B. C. D.参考答案:B【考点】余弦定理的应用.【分析】利用余弦定理解出第二大的角,结合三角形的内角和得出答案.【解答】解:设a=5,b=7,c=8,则A<B<C.∴cosB==,∴B=,∴A+C=π﹣B=.故选:B.【点评】本题考查了余弦定理得应用,属于基础题.4.若经过两点、的直线的倾斜角为,则y等于(
)A.-1 B.2 C.0 D.-3参考答案:D【分析】由直线AB的倾斜角得知直线AB的斜率为-1,再利用斜率公式可求出的值.【详解】由于直线AB的倾斜角为,则该直线的斜率为,由斜率公式得,解得,故选:D.【点睛】本题考查利用斜率公式求参数,同时也涉及了直线的倾斜角与斜率之间的关系,考查计算能力,属于基础题.5.如图,在△OAB中,P为线段AB上的一点,=x+y,且=3,则()A.x=,y= B.x=,y= C.x=,y= D.x=,y=参考答案:D【考点】平面向量的基本定理及其意义.【专题】平面向量及应用.【分析】由=3,利用向量三角形法则可得,化为,又=x+y,利用平面向量基本定理即可得出.【解答】解:∵=3,∴,化为,又=x+y,∴,y=.故选:D.【点评】本题考查了向量三角形法则、平面向量基本定理,考查了推理能力与计算能力,属于基础题.6.某工厂2013年生产某产品4万件,计划从2014年开始每年比上一年增产20%,从哪一年开始这家工厂生产这种产品的年产量超过12万件(已知lg2=0.3010,lg3=0.4771)A.2018年
B.2019年
C.2020年
D.2021年参考答案:C略7.若集合A={1,2},则集合A的所有子集个数是()A.1 B.2 C.3 D.4参考答案:B【考点】子集与真子集.【分析】根据n元集合有2n个子集,得到答案.【解答】解:集合A={1,2},则集合A的所有子集个数是2n=4个,故选:B.8.将函数f(x)=sin(2x+)图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图象向左平移个单位得到函数g(x)的图象.在g(x)图象的所有对称中心中,离原点最近的对称中心为()A.(﹣,0) B.(,0) C.(﹣,0) D.(,0)参考答案:D【分析】利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的图象的对称性,求得在g(x)图象的所有对称中心中,离原点最近的对称中心.【解答】解:将函数f(x)=sin(2x+)图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,可得y=sin(4x+)的图象;再将所得图象向左平移个单位得到函数g(x)=sin(4x++)=sin(4x+)的图象.令4x+=kπ,求得x=﹣,k∈Z,令k=1,可得在g(x)图象的所有对称中心中,离原点最近的对称中心为(,0),故选:D.9.已知,则的值为
A.
B.2
C.
D.-参考答案:D
10.函数(且)的图象恒过定点
(
)
A.
B.
C.
D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.在中,角,,所对的边分别为,,,为的面积,,则角
.参考答案:
12.已知=(-1,2),=(1,1),若+m与垂直,则实数m=_______参考答案:-513.当a>0且a≠1时,函数必过定点
.参考答案:14.已知二次函数()的图象如图所示,有下列四个结论:①;
②;③;
④。其中正确结论的序号有__________。(写出所有正确结论的序号)参考答案:①②③15.函数的最大值:
;参考答案:略16.数列.满足:,且,则=_________.参考答案:17.某单位用3.2万元购买了一台实验仪器,假设这台仪器从启用的第一天起连续使用,第天的维修保养费为元,若使用这台仪器的日平均费用最少,则一共使用了
天.参考答案:800略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在△ABC中,角A、B、C的对边分别为a、b、c,已知asinC=6csinB.(1)求的值;(2)若b=1,c=,求cosC.参考答案:【分析】(1)由已知及正弦定理可得a=6b,从而计算得解的值.(2)由已知可求a,进而利用余弦定理可求cosC的值.【解答】(本题满分为10分)解:(1)∵asinC=6csinB.∴由正弦定理可得:ac=6cb,可得:a=6b,∴=6.(2)∵b=1,c=,=6,可得:a=6,∴cosC===.19.已知△ABC的顶点A(3,2),∠C的平分线CD所在直线方程为y﹣1=0,AC边上的高BH所在直线方程为4x+2y﹣9=0. (1)求顶点C的坐标; (2)求△ABC的面积. 参考答案:【考点】直线的一般式方程与直线的垂直关系;直线的一般式方程与直线的平行关系.【专题】直线与圆. 【分析】(1)由高BH所在直线方程为4x+2y﹣9=0,可得kBH.由于直线AC⊥BH,可得kACkBH=﹣1.即可得到kAC,进而得到直线AC的方程,与CD方程联立即可得出点C的坐标; (2)求出直线BC的方程,进而得到点B的坐标,利用点到直线的距离公式可得点B到直线AC的距离,利用两点间的距离公式可得|AC|,利用三角形的面积计算公式可得. 【解答】解:(1)由高BH所在直线方程为4x+2y﹣9=0,∴=﹣2. ∵直线AC⊥BH,∴kACkBH=﹣1. ∴, 直线AC的方程为, 联立 ∴点C的坐标C(1,1). (2), ∴直线BC的方程为, 联立,即. 点B到直线AC:x﹣2y+1=0的距离为. 又, ∴. 【点评】本题考查了相互垂直的直线斜率之间的关系、角平分线的性质、点到直线的距离公式、两点间的距离公式、三角形的面积计算公式,属于基础题. 20.如图,在三棱锥P-ABC中,PA⊥底面ABC,D是PC的中点.已知,,,.求:(1)三棱锥P--ABC的体积;(2)异面直线BC与AD所成角的余弦值.参考答案:(1).(2)分析:(1)由题意结合三棱锥的体积公式可得三棱锥的体积为;(2)取PB的中点E,连接DE,AE,则∠ADE(或其补角)是异面直线BC与AD所成的角.结合余弦定理计算可得异面直线BC与AD所成角的余弦值为.详解:(1)S△ABC=×2×2=2,三棱锥P-ABC的体积为V=S△ABC·PA=×2×2=.(2)取PB的中点E,连接DE,AE,则ED∥BC,所以∠ADE(或其补角)是异面直线BC与AD所成的角.在△ADE中,DE=2,AE=,AD=2,cos∠ADE==.故异面直线BC与AD所成角的余弦值为.点睛:本题主要考查三棱锥的体积公式,异面直线所成的角等知识,意在考查学生的转化能力和计算求解能力.21.
直线l1过点A(0,1),l2过点B(5,0),l1∥l2且l1与l2的距离为5,求直线l1与l2的一般
式方程.参考答案:若直线l1,l2的斜率都不存在,则l1的方程为x=0,l2的方程为x=5,此时l1,l2之间距离为5,符合题意; 3分若l1,l2的斜率均存在,设直线的斜率为k,由斜截式方程得直线l1的方程为y=kx+1,即kx-y+1=0,由点斜式可得直线l2的方程为y=k(x-5),即kx-y-5k=0, 5分在直线l1上取点A(0,1),则点A到直线l2的距离d==5,∴25k2+10k+1=25k2+25,∴k=. 8分∴l1的方程为12x-5y+5=0,l2的方程为12x-5y-60=0.综上知,满足条件的直线方程为l1:x=0,l
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 园林绿化服务合同样本
- 工矿企业采购合同范本
- 批量物料采购合同格式
- 招标文件中的摩托车选购指南
- 焊接作业人员安全保证书
- 法律服务建议书撰写要点
- 药品物流跟踪与监控协议
- 写出明了的保证书
- 换热机组招标项目招标报名条件
- 标准建筑工程项目劳务
- 2024年秋季新人教版道德与法治七年级上册全册教案
- 传感技术智慧树知到期末考试答案章节答案2024年哈尔滨工业大学
- JBT 11699-2013 高处作业吊篮安装、拆卸、使用技术规程
- 24春国家开放大学《离散数学》大作业参考答案
- 国际发展援助概论智慧树知到期末考试答案2024年
- 浙江大学实验报告(流体力学)
- 国开电大本科《管理英语3》机考真题(第一套)
- 2023年大学生《思想道德与法治》考试题库附答案(712题)
- DB32T 4353-2022 房屋建筑和市政基础设施工程档案资料管理规程
- 中国科学院SCI 2区期刊目录
- 罗斯福原版英文演讲稿
评论
0/150
提交评论