版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省揭阳市双湖中学2022年高三数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知两个不同的平面和两条不重合的直线,则下列命题不正确的是()A.若则
B.若则C.若,则
D.若,则参考答案:D略2.已知双曲线过其左焦点F1作x轴的垂线交双曲线于A,B两点,若双曲线右顶点在以AB为直径的圆内,则双曲线离心率的取值范围为
A.(2,+∞)
B.(1,2)
C.(,+∞)
D.(1,)参考答案:A略3.学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有()A.36种 B.30种 C.24种 D.6种参考答案:B【考点】排列、组合及简单计数问题.【分析】间接法:先从4个中任选2个看作整体,然后做3个元素的全排列,从中排除数学、理综安排在同一节的情形,可得结论.【解答】解:由于每科一节课,每节至少有一科,必有两科在同一节,先从4个中任选2个看作整体,然后做3个元素的全排列,共=36种方法,再从中排除数学、理综安排在同一节的情形,共=6种方法,故总的方法种数为:36﹣6=30故选:B.4.定义在[1,+∞)上的函数f(x)满足:①当2≤x≤4时,f(x)=1﹣|x﹣3|;②f(2x)=cf(x)(c为正常数),若函数的所有极大值点都落在同一直线上,则常数c的值是()A.1 B.±2 C.或3 D.1或2参考答案:D【考点】抽象函数及其应用.【专题】计算题;函数的性质及应用.【分析】由已知中定义在[1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1﹣|x﹣3|.我们可得分段函数f(x)的解析式,进而求出三个函数的极值点坐标,进而根据三点共线,则任取两点确定的直线斜率相等,可以构造关于c的方程,解方程可得答案.【解答】解:∵当2≤x≤4时,f(x)=1﹣|x﹣3|.当1≤x<2时,2≤2x<4,则f(x)=f(2x)=(1﹣|2x﹣3|),此时当x=时,函数取极大值;当2≤x≤4时,f(x)=1﹣|x﹣3|;此时当x=3时,函数取极大值1;当4<x≤8时,2<≤4,则f(x)=cf()=c(1﹣|﹣3|),此时当x=6时,函数取极大值c.∵函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,∴=,解得c=1或2.故选D.【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.5.已知p:x2-(3+a)x+3a<0,其中a<3;q:x2+4x-5>0.(1)若p是?q的必要不充分条件,求实数a的取值范围;(2)若p是q的充分不必要条件,求实数a的取值范围.参考答案:解:(1)因为x2-(3+a)x+3a<0,a<3,所以a<x<3,记A=(a,3),又因为x2+4x-5>0,所以x<-5或x>1,记B=(-∞,-5)∪(1,+∞),又p是?q的必要不充分条件,所以有?q?p,且p推不出?q,所以?A,即[-5,1]?(a,3),所以实数a的取值范围是a∈(-∞,-5).(2)因为p是q的充分不必要条件,则有p?q,且q推不出p,所以A?B,所以有(a,3)?(-∞,-5)∪(1,+∞),即a≥1,所以实数a的取值范围是a∈[1,3).
6.函数的导函数的图像如图所示,那么的图像最有可能的是(☆)参考答案:A7.设命题p:?x<0,x2≥1,则?p为()A.?x≥0,x2<1 B.?x<0,x2<1 C.?x≥0,x2<1 D.?x<0,x2<1参考答案:B【考点】命题的否定.【分析】根据含有量词的命题的否定进行判断即可.【解答】解:特称命题的否定是全称命题,∴?p:?x∈R,都有x2<1.故选:B.8.已知是空间三条不同的直线,下列命题中正确的是(
)A.如果,则
B.如果,则共面C.如果,则
D.如果共点,则共面参考答案:A根据线面垂直和平行的性质可知,A正确,所以选A.【答案】【解析】9.已知,则、、的大小关系是(▲)。 A.
B. C.
D.参考答案:B略10.已知第一象限内的点M既在双曲线C1:﹣=1(a>0,b>0)上,又在抛物线C2:y2=2px上,设C1的左,右焦点分别为F1、F2,若C2的焦点为F2,且△MF1F2是以MF1为底边的等腰三角形,则双曲线的离心率为()A. B. C.1+ D.2+参考答案:C【考点】双曲线的简单性质.【分析】根据条件得到抛物线和双曲线的焦点相同,根据双曲线和抛物线的定义得到△MF1F2为等腰直角三角形,利用定义建立方程进行求解即可.【解答】解:∵设C1的左,右焦点分别为F1、F2,若C2的焦点为F2,∴抛物线的准线方程为x=﹣c,若△MF1F2是以MF1为底边的等腰三角形,由于点M也在抛物线上,∴过M作MA垂直准线x=﹣c则MA=MF2=F1F2,则四边形AMF2F1为正方形,则△MF1F2为等腰直角三角形,则MF2=F1F2=2c,MF1=MF2=2c,∵MF1﹣MF2=2a,∴2c﹣2c=2a,则(﹣1)c=a,则离心率e===1+,故选:C二、填空题:本大题共7小题,每小题4分,共28分11.已知100名学生某月饮料消费支出情况的频率分布直方图如右图所示.则这100名学生中,该月饮料消费支出超过150元的人数是
.参考答案:3012.已知复数,则复数的虚部为______参考答案:1【分析】根据复数的除法运算法则,计算出复数的值,然后求出复数的共轭复数,最后写出的虚部.【详解】,所以复数的虚部为1.【点睛】本题考查了复数的除法运算、求一个复数的共轭复数的虚部,解题的关键是掌握复数除法的运算法则、复数的共轭复数的概念、以及复数虚部的概念.
13.三个半径均为3且两两外切的球O1、O2、O3放在水平桌面上,现有球I放在桌面上与球O1、O2、O3都外切,则球I的半径是_________.参考答案:1略14.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,…,599,600从中抽取60个样本,如下提供随机数表的第4行到第6行:322118342978645407325242064438122343567735789056428442125331345786073625300732862345788907236896080432567808436789535577348994837522535578324577892345若从表中第6行第6列开始向右依次读取数据,则得到的第6个样本编号_____参考答案:535【分析】根据题意按既定的方法向右读,直到取到第六个样本为止,即可得其编号。【详解】根据题意第六行第六列的数是8,从8开始向右读,得到一个三位数808,由于808>600,将它去掉,继续向右读,得到436,436<600说明它在总体内,将它取出,继续向右读,得到789,789>600,将它去掉,再向右读,得到535,535<600,将它取出,按此方法向右读,直到取到第六个样本为止,获得6个样本的编号依次为:436,535,577,348,522,535,因此第6个样本编号为535.【点睛】本题考查随机数表法,属于基础题。15.函数的定义域是______________.参考答案:{x|x>1}略16.设,若函数在区间上有极值点,则的取值范围为()A.B.C.D.参考答案:C17.以坐标原点O为圆心,且与直线x+y+2=0相切的圆方程是
,圆O与圆x2+y2﹣2y﹣3=0的位置关系是.参考答案:x2+y2=2;相交.【考点】圆的切线方程.【分析】由坐标原点为所求圆的圆心,且所求圆与已知直线垂直,利用点到直线的距离公式求出原点到已知直线的距离d,根据直线与圆相切时圆心到直线的距离等于圆的半径,即可得到所求圆的半径r,根据圆心和半径写出所求圆的方程即可;由两圆的圆心距为1,介于半径差与和之间,可得两圆相交.【解答】解:∵原点为所求圆的圆心,且所求圆与直线x+y+2=0相切,∴所求圆的半径r=d==,则所求圆的方程为x2+y2=2.x2+y2﹣2y﹣3=0的圆心为(0,1),半径为2,两圆的圆心距为1,介于半径差与和之间,两圆相交.故答案为:x2+y2=2;相交.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设数列{an}满足a1=a,an+1=an2+a1,.(1)当a∈(-∞,-2)时,求证:M;(2)当a∈(0,]时,求证:a∈M;(3)当a∈(,+∞)时,判断元素a与集合M的关系,并证明你的结论.参考答案:证明:(1)如果,则,.………2分(2)当时,().
事实上,〔〕当时,.设时成立(为某整数),则〔〕对,.由归纳假设,对任意n∈N*,|an|≤<2,所以a∈M.…………6分
(3)当时,.证明如下:对于任意,,且.对于任意,,则.
所以,.当时,,即,因此.…………10分19.(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知(1)求的值。(2)若,求△ABC的面积。参考答案:略20.如图,A,B,C是⊙O上的3个不同的点,半径OA交弦BC于点D.求证:.参考答案:证明:延长交⊙O于点E,
则.……5分
因为,
所以.
所以.
……10分21.设函数.(Ⅰ)求f(x)的最小正周期和对称中心;(Ⅱ)若函数,求函数g(x)在区间上的最值.参考答案:(Ⅰ),;(Ⅱ),.【分析】(Ⅰ)把已知函数解析式变形,再由辅助角公式化积,利用周期公式求周期,再由求得值,可得函数的对称中心;(Ⅱ)求出的解析式,得到函数在区间上的单调性,则最值可求.【详解】(Ⅰ)由已知,有.
最小正周期,由,得,.对称中心为;(Ⅱ)由,得,当时,,,可得在区间上单调递增,当时,,,可得在区间上单调递减..又,.【点睛】本题考查三角函数的恒等变换应用,考查型函数的图象和性质,是中档题.22.如图,四棱锥的底面是正方形,,点E在棱PB上.(Ⅰ)求证:平面;
(Ⅱ)当且E为PB的中点时,求AE与平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年出售山顶房屋合同范本
- 2024年出售电动柴油机合同范本
- 2024年承接填地整平工程合同范本
- 2024理财经理述职报告
- 湖北省荆门市京山市2024-2025学年七年级上学期期中语文试题(含答案)
- 天津市蓟州区2024-2025学年高一上学期11月期中考试 化学(含答案)
- 韭菜子泡酒的正确做法与比例解析
- 澄南大道B合同段立交施工组织设计
- 初中校园安全警钟长鸣
- 制造业系统培训课件
- 市政工程水池满水试验记录
- 雷沃十年十大影响力事件评选活动方案
- 风电相关书籍18
- 全员育人导师制工作手册
- GIS安装施工方案
- 矿区基本情况(简介)
- 最新办公楼物业交接表格资料
- 钳工教学中钻孔方法的改进探究
- 高处作业基本知识高处不胜寒安全不能忘
- 南苑校区集团考核自评报告
- 浅谈智能化工程总包管理及智能化工程深化设计
评论
0/150
提交评论