下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省揭阳市业余中学2022年高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.目前哈尔滨的电话号码为8位数字,某人打电话时,忘记了电话号码的最后一位数字是多少,但他记得最后一位是偶数,不超过两次就按对的概率为(
)A.
B.
C.
D.
参考答案:C略2.设函数,曲线在点(1,)处的切线方程为,则曲线在点(1,)处切线的斜率为(
)A.4
B.
C.2
D.参考答案:A3.从5男4女中选4位代表,其中至少有2位男生,且至少有1位女生,分别到四个不同的工厂调查,不同的分派方法有
A、100种
B、400种
C、4800种
D、2400种参考答案:D略4.某中学为了研究学生的视力和座位(有关和无关)的关系,运用2×2列联表进行独立性研究,经计算K2=7.069,则至少有()的把握认为“学生的视力与座位有关”.附:P(K2≥k0)0.1000.0500.0250.0100.001k02.7063.8415.0246.63510.828A.95% B.99% C.97.5% D.90%参考答案:B【考点】独立性检验的应用.【分析】把观测值同临界值进行比较.得到有99%的把握说学生性别与支持该活动有关系【解答】解:∵K2=7.069>6.635,对照表格:
P(K2≥k0)0.1000.0500.0250.0100.001k02.7063.8415.0246.63510.828∴有99%的把握说学生性别与支持该活动有关系.故选B.5.设是定义域为R的偶函数,且在(0,+∞)单调递减,则(
)A.B.C.D.参考答案:C【分析】由已知函数为偶函数,把,转化为同一个单调区间上,再比较大小.【详解】是R的偶函数,.,又在(0,+∞)单调递减,∴,,故选C.【点睛】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.6.已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是()A.﹣1<a<2B.﹣3<a<6C.a<﹣3或a>6D.a<﹣1或a>2参考答案:C
考点:利用导数研究函数的极值.专题:计算题.分析:题目中条件:“函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值”告诉我们其导数有两个不等的实根,利用二次方程根的判别式可解决.解答:解:由于f(x)=x3+ax2+(a+6)x+1,有f′(x)=3x2+2ax+(a+6).若f(x)有极大值和极小值,则△=4a2﹣12(a+6)>0,从而有a>6或a<﹣3,故选C.点评:本题主要考查利用导数研究函数的极值,导数的引入,为研究高次函数的极值与最值带来了方便.7.下列命题与“”的表述方法不同的是
(
)A.有一个使得;
B.有些,使得;C.任选一个使得;
D.至少有一个使得。参考答案:C略8.下列说法中错误的个数为
(
)①一个命题的逆命题为真,它的否命题也一定为真;②若一个命题的否命题为假,则它本身一定为真;③是的充要条件;④与是等价的;⑤“”是“”成立的充分条件.
A、2
B、3
C、4
D、5参考答案:C略9.由直线,x=2,曲线及x轴所围成图形的面积为(
)A. B. C. D.参考答案:D10.抛物线y=x2的焦点坐标为()A.(1,0) B.(2,0) C.(0,) D.(0,)参考答案:D【考点】抛物线的简单性质.【分析】根据题意,由抛物线的方程分析可得该抛物线的焦点在y轴正半轴上,且2p=,由坐标公式计算可得答案.【解答】解:抛物线的方程为:y=x2,变形可得x2=y,其焦点在y轴正半轴上,且2p=,则其焦点坐标为(0,),故选:D.二、填空题:本大题共7小题,每小题4分,共28分11.已知f(x)=x2—5x+6则不等式f(x)>0的解集为
参考答案:12.函数的图象在点处的切线方程是_____________.参考答案:【分析】首先求出在1处的导数,再求出在1处的函数值,然后用点斜式求出方程即可.【详解】,∴且,切线方程是,即.【点睛】本题考查利用导数求函数在点处的切线方程,属于基础题.13.设a=dx,对任意x∈R,不等式a(cos2x-m)+πcosx≥0恒成立,则实数m的取值范围为________.参考答案:(-∞,-3]14.命题“存在x∈Z,使x2+2x+m≤0”的否定是. 参考答案:?x∈Z,x2+2x+m>0【考点】命题的否定. 【专题】规律型. 【分析】将“存在”换为“?”同时将结论“x2+2x+m≤0”换为“x2+2x+m>0”. 【解答】解:“存在x∈Z,使x2+2x+m≤0”的否定是 ?x∈Z,x2+2x+m>0, 故答案为?x∈Z,x2+2x+m>0 【点评】求含量词的命题的否定,应该将量词交换同时将结论否定. 15.直线与圆相交于两点,若,则
参考答案:
略16.如图甲,在△ABC中,AB⊥AC,AD⊥BC,D为.垂足,则AB2=BD?BC,该结论称为射影定理.如图乙,在三棱锥A﹣BCD中,AD⊥平面ABC,AO⊥平面BCD,O为垂足,且O在△BCD内,类比射影定理,探究S△ABC、S△BCO、S△BCD这三者之间满足的关是.参考答案:S△ABC2=S△BCO?S△BCD【考点】F3:类比推理.【分析】这是一个类比推理的题,在由平面图形到空间图形的类比推理中,一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质,由已知在平面几何中,(如图所示)若△ABC中,AB⊥AC,AD⊥BC,D是垂足,则AB2=BD?BC,我们可以类比这一性质,推理出若三棱锥A﹣BCD中,AD⊥面ABC,AO⊥面BCD,O为垂足,则S△ABC2=S△BCO?S△BCD.【解答】解:由已知在平面几何中,若△ABC中,AB⊥AC,AD⊥BC,D是垂足,则AB2=BD?BC,我们可以类比这一性质,推理出:若三棱锥A﹣BCD中,AD⊥面ABC,AO⊥面BCD,O为垂足,则S△ABC2=S△BCO?S△BCD.故答案为S△ABC2=S△BCO?S△BCD.17.类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足关系:。若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为
.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.一座桥,两端的桥墩已建好,这两桥墩相距米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为米的相邻桥墩之间的桥面工程费用为万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为万元.(Ⅰ)试写出关于的函数关系式;(Ⅱ)当=640米时,需新建多少个桥墩才能使最小?参考答案:(Ⅰ)设需要新建个桥墩,,所以(Ⅱ)方法一:由(Ⅰ)知,,令,得,所以=64当0<<64时,<0,在区间(0,64)内为减函数;当时,>0,在区间(64,640)内为增函数,所以在=64处取得最小值,此时,故需新建9个桥墩才能使最小.方法二:
(当且仅当即取等)19.从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分步和频率分布直方图组号分组频数1[0,2)62[2,4)83[4,6)174[6,8)225[8,10)256[10,12)127[12,14)68[14,16)29[16,18)2合计
100(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的频率;(Ⅱ)求频率分布直方图中的a,b的值.参考答案:【考点】频率分布直方图.【专题】概率与统计.【分析】(Ⅰ)先频数分布表求出课外阅读时间不少于12小时的人数,再由对立事件的频率公式求出一名学生该周课外阅读时间少于12小时的频率;(Ⅱ)结合频数分布表、直方图确定课外阅读时间落在[4,6)、[8,10)的人数为17,求出对应的频率,分别由求出a、b的值.【解答】解:(Ⅰ)由频数分布表得,100名学生课外阅读时间不少于12小时共有6+2+2=10名,所以样本中学生该周课外阅读时间少于12小时的频率P=1﹣=0.9;则从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的频率是0.9;(Ⅱ)由频数分布表得,课外阅读时间落在[4,6)的人数为17,则频率是=0.17,所以由频率分布直方图得,a==0.085,同理可得,b==0.125.【点评】本题考查由频数分布表、直方图求频数、频率,考查频率公式,频率分布直方图坐标轴的应用,属于基础题.20.(本小题满分12分)某校从参加某次知识竞赛的同学中,选取名同学将其成绩(百分制,均为整数)分成,,,,,六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.(1)求分数在内的频率,并补全这个频率分布直方图;(2)从频率分布直方图中,估计本次考试成绩的中位数;(3)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.参考答案:(1)………………2分
(2)………………6分
(3)第1组:人(设为1,2,3,4,5,6)
第6组:人(设为A,B,C)
共有36个基本事件,满足条件的有18个,所以概率为…………12分21.已知抛物线;(Ⅰ)过点作直线与抛物线C交于A,B两点,弦AB恰被Q平分,求弦AB所在直线方程.(Ⅱ)过点作一条直线与抛物线C交于A,B两点,求弦AB的中点的轨迹方程.参考答案:(Ⅰ)由题知,当轴时,不满足题意…………1分设,,直线,…………3分所以,又,所以所以直线方程为…………6分(Ⅱ)设,,弦中点为则,当直线的斜率存在时,…8分所以,又…………9分即…………11分当轴时,满足题意,所以弦的中点的轨迹方程…………12分22.已知函数f(x)=cosxcos(x+).(Ⅰ)求f(x)的最小正周期;(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,若f(c)=﹣,a=2,且△ABC的面积为2,求边长c的值.参考答案:【考点】余弦定理;三角函数的周期性及其求法.【分析】(1)由三角函数公式化简可得f(x)=cos(2x+)+,由周期公式可得;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合作协议合同范本大全
- 鲍温样丘疹病病因介绍
- 2023房屋租赁协议书样本6篇
- 2025工厂转让协议书
- 2024-2025学年山东省滨州市无棣县青岛版二年级上册期中考试数学试卷(原卷版)-A4
- 2023年天津市十二区重点学校高考语文二模试卷
- 重庆2020-2024年中考英语5年真题回-教师版-专题03 短文填空
- 激励与约束对基层卫生改革的几点思考课件
- 2024-2025食醋行业发展现状及未来趋势报告
- PLC控制技术考试模拟题+参考答案
- 【MOOC】大学摄影-河南理工大学 中国大学慕课MOOC答案
- 执纪审查业务专题培训
- 音乐著作权授权合同模板
- 《铁路轨道维护》课件-钢轨钻孔作业
- 【MOOC】数据结构与算法-北京大学 中国大学慕课MOOC答案
- 二零二四年光伏电站建设与运营管理合同2篇
- 2024版:离婚法律诉讼文书范例3篇
- 一专科一特色护理汇报
- 部编版九年级历史下册第15课-第二次世界大战-练习题(含答案)
- 家庭教育工作评估实施细则
- 道法第二单元 成长的时空 单元测试 2024-2025学年统编版道德与法治七年级上册
评论
0/150
提交评论