下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广州市黄埔中学高一数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.非零向量满足,则与夹角为(
)A、
B、
C、
D、
参考答案:B2.函数f(x)=x2﹣4x+5在区间[0,m]上的最大值为5,最小值为1,则m的取值范围是()A.[2,+∞) B.[2,4] C.(﹣∞,2] D.[0,2]参考答案:B【考点】函数单调性的性质.【专题】计算题.【分析】先用配方法找出函数的对称轴,明确单调性,找出取得最值的点,得到m的范围.【解答】解:函数f(x)=x2﹣4x+5转化为f(x)=(x﹣2)2+1∵对称轴为x=2,f(2)=1,f(0)=f(4)=5又∵函数f(x)=x2﹣4x+5在区间[0,m]上的最大值为5,最小值为1∴m的取值为[2,4];故选B.【点评】本题主要考查函数的单调性的应用.3.圆心为C(6,5),且过点B(3,6)的圆的方程为()A.(x﹣6)2+(y﹣5)2=10 B.(x﹣6)2+(y+5)2=10 C.(x﹣5)2+(y﹣6)2=10 D.(x﹣5)2+(y+6)2=10参考答案:A【考点】圆的标准方程.【专题】计算题.【分析】要求圆的方程,因为已知圆心坐标,只需求出半径即可,所以利用两点间的距离公式求出|BC|的长度即为圆的半径,然后根据圆心和半径写出圆的标准方程即可.【解答】解:因为|BC|==,所以圆的半径r=,又圆心C(6,5),则圆C的标准方程为(x﹣6)2+(y﹣5)2=10.故选A.【点评】此题考查学生灵活运用两点间的距离公式化简求值,会根据圆心坐标和半径写出圆的标准方程,是一道综合题.4.函数的零点所在区间为,则A.1
B.2
C.3
D.4参考答案:B5.如果,那么与终边相同的角可以表示为
(
)A、;
B、;参考答案:B6.设集合都是的含有两个元素的子集,且满足对任意的都有其中表示两个数的较小者,则的最大值是(
)
A、10
B、11
C、12
D、13参考答案:B7.在中,若,,则的形状为…(
▲
)A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰或直角三角形参考答案:C略8.已知函数若f(2﹣a2)>f(a),则实数a的取值范围是(
)A.(﹣∞,﹣1)∪(2,+∞) B.(﹣1,2) C.(﹣2,1) D.(﹣∞,﹣2)∪(1,+∞)参考答案:C【考点】函数单调性的性质;其他不等式的解法.【专题】函数的性质及应用.【分析】由题义知分段函数求值应分段处理,利用函数的单调性求解不等式.【解答】解:由f(x)的解析式可知,f(x)在(﹣∞,+∞)上是单调递增函数,在由f(2﹣a2)>f(a),得2﹣a2>a即a2+a﹣2<0,解得﹣2<a<1.故选C【点评】此题重点考查了分段函数的求值,还考查了利用函数的单调性求解不等式,同时一元二次不等式求解也要过关.9.已知a>0,x,y满足约束条件,若z=2x+y的最小值为1,则a=A. B. C.1 D.2参考答案:B画出不等式组表示的平面区域如右图所示:当目标函数z=2x+y表示的直线经过点A时,取得最小值,而点A的坐标为(1,),所以,解得,故选B.【考点定位】本小题考查线性规划的基础知识,难度不大,线性规划知识在高考中一般以小题的形式出现,是高考的重点内容之一,几乎年年必考.10.圆x2+y2+2x=0和圆x2+y2-4y=0的位置关系是
A.内切
B.内含
C.相交
D.外离参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.下列几个命题①则A=B②函数是偶函数,但不是奇函数③方程的有一个正实根,一个负实根,则④函数的图象一定过定点P,则P点的坐标是(1,4)⑤若为偶函数,则有其中正确的命题序号为
参考答案:①③④12.已知实数满足方程及,则的最小值是
参考答案:及,,
13.已知数列的前项和为满足()(I)证明数列为等比数列;(II)设,求数列的前项和
参考答案:
解:(I)
两式相减得:
即:又因为所以数列为首项为公比为的等比数列(II)由(I)知所以令
(1)
(2)(1)-(2)得故:
略14.在正三棱锥S-ABC中,外接球的表面积为,M,N分别是SC,BC的中点,且,则此三棱锥侧棱SA=
.
参考答案:略15.若是奇函数,则a=
.参考答案:﹣1【考点】对数函数图象与性质的综合应用;函数奇偶性的性质.【专题】计算题;函数的性质及应用.【分析】根据奇函数的定义:在定义域内任意一个x,都有f(﹣x)=﹣f(x).可以用这一个定义,采用比较系数的方法,求得实数m的值.【解答】解:∵∴∵是奇函数∴f(﹣x)=﹣f(x)=∴恒成立即恒成立∴2+a=1?a=﹣1故答案为:﹣1【点评】本题着重考查了函数奇偶性的定义、基本初等函数的性质等知识点,属于基础题.请同学们注意比较系数的解题方法,在本题中的应用.16.一元二次方程有一个正根和一个负根,则实数的取值范围为__________.参考答案:0<k<3略17.(5分)已知52x=25,则5﹣x=
.参考答案:考点: 有理数指数幂的化简求值.专题: 计算题.分析: 根据指数幂的运算性质进行计算即可.解答: ∵52x=25=52,∴2x=2,x=1,∴5﹣x=5﹣1=,故答案为:.点评: 本题考查了指数幂的运算性质,是一道基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[2a,a+1]上不单调,求a的取值范围.参考答案:略19.如图,在四棱锥中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.(1)求证:AD⊥PB;(2)已知点M是线段PC上,MC=λPM,且PA∥平面MQB,求实数λ的值.参考答案:【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系.【分析】(1)连结BD,则△ABD为正三角形,从而AD⊥BQ,AD⊥PQ,进而AD⊥平面PQB,由此能证明AD⊥PB.(2)连结AC,交BQ于N,连结MN,由AQ∥BC,得,根据线面平行的性质定理得MN∥PA,由此能求出实数λ的值.【解答】证明:(1)如图,连结BD,由题意知四边形ABCD为菱形,∠BAD=60°,∴△ABD为正三角形,又∵AQ=QD,∴Q为AD的中点,∴AD⊥BQ,∵△PAD是正三角形,Q为AD中点,∴AD⊥PQ,又BQ∩PQ=Q,∴AD⊥平面PQB,又∵PB?平面PQB,∴AD⊥PB.解:(2)连结AC,交BQ于N,连结MN,∵AQ∥BC,∴,∵PN∥平面MQB,PA?平面PAC,平面MQB∩平面PAC=MN,∴根据线面平行的性质定理得MN∥PA,∴,综上,得,∴MC=2PM,∵MC=λPM,∴实数λ的值为2.20.(15分)已知圆的半径为,圆心在直线y=2x上,圆被直线x﹣y=0截得的弦长为,求圆的方程.参考答案:考点: 关于点、直线对称的圆的方程.专题: 计算题.分析: 设圆心(a,2a),由弦长求出a的值,得到圆心的坐标,又已知半径,故可写出圆的标准方程.解答: 设圆心(a,2a),由弦长公式求得弦心距d==,再由点到直线的距离公式得d==|a|,∴a=±2,∴圆心坐标为(2,4),或(﹣2,﹣4),又半径为,∴所求的圆的方程为:(x﹣2)2+(y﹣4)2=10或(x+2)2+(y+4)2=10.点评: 本题考查圆的标准方程的求法,利用弦长公式和点到直线的距离公式,关键是求出圆心的坐标.21.已知a,b,c分别为△ABC内角A,B,C所对的边,(Ⅰ)求角C;(Ⅱ)若,求的值。参考答案:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025安全生产月计划例文
- 幼儿园工作计划汇编
- 2025年度高中美术班教学计划范文
- 关于幼儿园下半年工作计划模板锦集
- 2025年1月外贸业务员工作计划
- 中小学学籍管理工作计划
- 2025年行政人事主管工作计划
- 2025年中学体育教研组工作计划例文
- 《食品添加剂概述》课件
- 《多目标决策分析》课件
- 大学学院辅导员工作室建设与管理办法(试行)
- 微生物学(细胞型)智慧树知到期末考试答案章节答案2024年哈尔滨师范大学
- 严重精神障碍患者随访服务记录表
- 学前卫生学智慧树知到期末考试答案章节答案2024年杭州师范大学
- 2024年成都环境投资集团有限公司招聘笔试冲刺题(带答案解析)
- 二年级美术上册第14课奇特的梦全国公开课一等奖百校联赛微课赛课特等奖课件
- 农民专业合作社财务报表(三张报表)
- 版《公路工程机械台班费用定额》
- 应急管理部宣传教育中心招聘笔试试卷2021
- 2024-2030年全球智能垃圾桶行业市场发展分析及前景趋势与投资研究报告
- 《电站炉水循环泵电机运行导则》
评论
0/150
提交评论