广东省广州市思源学校2022-2023学年高二数学理模拟试卷含解析_第1页
广东省广州市思源学校2022-2023学年高二数学理模拟试卷含解析_第2页
广东省广州市思源学校2022-2023学年高二数学理模拟试卷含解析_第3页
广东省广州市思源学校2022-2023学年高二数学理模拟试卷含解析_第4页
广东省广州市思源学校2022-2023学年高二数学理模拟试卷含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省广州市思源学校2022-2023学年高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.(5分)如果复数z满足(2+i)z=5i(i是虚数单位),则z() A.1+2i B. ﹣1+2i C. 2+i D. 1﹣2i参考答案:C2.设随机变量ξ~N(μ,σ2),函数f(x)=x2+4x+ξ没有零点的概率是0.5,则μ等于()A.1 B.4 C.2 D.不能确定参考答案:B【考点】正态分布曲线的特点及曲线所表示的意义.【专题】计算题;概率与统计.【分析】由题中条件:“函数f(x)=x2+4x+ξ没有零点”可得ξ>4,结合正态分布的图象的对称性可得μ值.【解答】解:函数f(x)=x2+4x+ξ没有零点,即二次方程x2+4x+ξ=0无实根得ξ>4,∵函数f(x)=x2+4x+ξ没有零点的概率是0.5,∴P(ξ>4)=0.5,由正态曲线的对称性知μ=4,故选:B.【点评】从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大.3.函数f(x)=+lg(3x+1)的定义域是()A.(﹣,+∞) B.(﹣,1) C.(﹣,) D.(﹣∞,﹣)参考答案:B【考点】对数函数的定义域;函数的定义域及其求法.【分析】依题意可知要使函数有意义需要1﹣x>0且3x+1>0,进而可求得x的范围.【解答】解:要使函数有意义需,解得﹣<x<1.故选B.4.已知正方体外接球的体积是,那么正方体的棱长等于

) (A)(B)(C)(D)参考答案:D略5.圆心在x+y=0上,且与x轴交于点A(﹣3,0)和B(1,0)的圆的方程为()A.(x+1)2+(y﹣1)2=5 B.(x﹣1)2+(y+1)2= C.(x﹣1)2+(y+1)2=5 D.(x+1)2+(y﹣1)2=参考答案:A【考点】圆的标准方程.【分析】要求圆的标准方程,先求圆心坐标:根据圆心在直线上设出圆心坐标,根据圆的定义可知|OA|=|OB|,然后根据两点间的距离公式列出方程即可求出圆心坐标;再求半径:利用利用两点间的距离公式求出圆心O到圆上的点A之间的距离即为圆的半径.然后根据圆心和半径写出圆的标准方程即可.【解答】解:由题意得:圆心在直线x=﹣1上,又圆心在直线x+y=0上,∴圆心M的坐标为(﹣1,1),又A(﹣3,0),半径|AM|==,则圆的方程为(x+1)2+(y﹣1)2=5.故选A.6.设为曲线上的点,且曲线在点处的切线的倾斜角的取值范围为,则点的横坐标的取值范围为(

)A.

B.

C.

D.参考答案:C7.已知抛物线,圆(其中为常数,)过点的直线交圆于两点,交抛物线于两点,且满足的直线只有三条的必要条件是、

、参考答案:D8.设等差数列{an}的前n项的和为Sn,若a1>0,S4=S8,则当Sn取得最大值时,n的值为()A.5 B.6 C.7 D.8参考答案:B【考点】等差数列的性质.【分析】设等差数列的公差为d,根据等差数列的前n项和的公式化简S4=S8,得到首项与公差的关系式,根据首项大于0得到公差d小于0,所以前n项和Sn是关于n的二次函数,由d小于0得到此二次函数为开口向下的抛物线,有最大值,则根据二次函数的对称性可知当n等于6时,Sn取得最大值.【解答】解:由S4=S8得:4a1+d=8a1+d,解得:a1=﹣d,又a1>0,得到d<0,所以Sn=na1+d=n2+(a1﹣)n,由d<0,得到Sn是一个关于n的开口向下抛物线,且S4=S8,由二次函数的对称性可知,当n==6时,Sn取得最大值.故选B.9.直线过点且与直线垂直,则的方程是(

)A.

B.C.

D.参考答案:A10.如图所示,是圆上的三个点,的延长线与线段交于圆内一点,若,则

)A.

B.

C.

D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.过抛物线y2=4x的焦点且斜率为1的直线交该抛物线于A、B两点,则|AB|=

.参考答案:8【考点】抛物线的简单性质.【分析】先根据抛物线方程求得抛物线的焦点坐标,进而根据点斜式求得直线的方程与抛物线方程联立,消去y,根据韦达定理求得x1+x2=的值,进而根据抛物线的定义可知|AB|=x1++x2+,求得答案.【解答】解:抛物线焦点为(1,0),且斜率为1,则直线方程为y=x﹣1,代入抛物线方程y2=4x得x2﹣6x+1=0,设A(x1,y1),B(x2,y2)∴x1+x2=6根据抛物线的定义可知|AB|=x1++x2+=x1+x2+p=6+2=8,故答案为:8.【点评】本题主要考查了直线与圆锥曲线的关系,抛物线的简单性质.对学生基础知识的综合考查.关键是:将直线的方程代入抛物线的方程,消去y得到关于x的一元二次方程,再结合根与系数的关系,利用弦长公式即可求得|AB|值,从而解决问题.12.从某地区随机抽取100名高中男生,将他们的体重(单位:)数据绘制成频率分布直方图(如图)。由图中数据可知体重的平均值为

。参考答案:64.5略13.已知算法如下:

S=0

Inputn

whilei<=nS=S+2*i

i=i+1

wend.print

S

end若输入变量n的值为3,则输出变量S的值为

;若输出变量S的值为30,则变量n的值为

.参考答案:12,514.已知则x=

。参考答案:3或715.若函数在其定义域内的一个子区间内不是单调函数,则实数k的取值范围是

参考答案:16.不等式的解集为

.参考答案:{x|}【考点】一元二次不等式的解法.【专题】不等式的解法及应用.【分析】先将不等式右边化成0即移项通分,然后转化成正式不等式,由此解得此不等式的解集,特别注意分母不为0.【解答】解:不等式的解集可转化成即等价于解得:故不等式的解集为{x|}故答案为:{x|}【点评】本题主要考查分式不等式的解法,体现了等价转化的数学思想,属于基础题.17.从区间内任取两个数,则这两个数的和小于的概率为________________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分7分)已知某同学根据所学知识编出了1+2+3+100的算法框图,并根据框图,写出了程序:①请你根据该同学的做法,对该同学的框图作些修改。写出的算法框图②请你根据该同学的做法,对该同学所写的程序作些修改。写出的算法程序

参考答案:(本题满分7分)解:①程序框图如右②程序如右

略19.设,是函数的图象上任意两点,若M为A,B的中点,且M的横坐标为1.(1)求;(2)若,,求Tn;(3)已知数列{an}的通项公式(,),数列{an}的前n项和为Sn,若不等式对任意恒成立,求m的取值范围.参考答案:(1)2;(2);(3).试题分析:(1)根据中点坐标公式可知,所以,,整理即可求得的值;(2)由第(1)问可知当时,为定值,观察可知共项,根据倒序相加法可知,,,和均为定值2,共个2,所以和为,即得到的值;(3)由可知,为等差数列乘等比数列,所以求数列的前n项和采用错位相减法,然后代入整理得到恒成立,所以只需,因此根据数列的单调性求出的最大值即可.本题以函数为背景,旨在考查数列的相关知识,考查倒序相加求和,错位相减求和,同时还考查不等式恒成立问题.综合性较强,考查学生对知识总体的把握能力.试题解析:(1)由已知点M为线段AB中点,则:∴(2)由(1),当时,有故∴(3)由已知:不等式即也即,即恒成立故只需令当时,当时,,当时,故;故∴,解得:考点:(1)中点坐标公式;(2)倒序相加求和;(3)错位相减求和;(4)不等式恒成立.20.(1)求的展开式中的常数项;

(2)已知,

求的值.

参考答案:(1)展开式通项为:由,可得r=6.因此展开式的常数项为第7项:(2)恒等式中赋值,分别令x=-2与x=-1,得到然后两式相减得到21.已知椭圆,动直线(1)若动直线l与椭圆C相交,求实数m的取值范围;(2)当动直线l与椭圆C相交时,证明:这些直线被椭圆截得的线段的中点都在直线3x+2y=0上.参考答案:【考点】椭圆的简单性质.【分析】(1)联立直线方程与椭圆方程,由判别式大于0求得实数m的取值范围;(2)由(1)中的方程结合根与系数的关系可得直线l被椭圆所截线段中点的坐标,代入直线3x+2y=0成立,说明直线被椭圆截得的线段的中点都在直线3x+2y=0上.【解答】(1)解:将代入,整理得:9x2+6mx+2m2﹣18=0,由△=36m2﹣36(2m2﹣18)=﹣36m2+36×18>0,解得,∴实数m的取值范围是();(2)证明:设直线l与椭圆C相交于A(x1,y1),B(x2,y2),由(1)知,∴,故线段AB的中点,代入直线3x+2y=0,可得3×.∴直线被椭圆截得的线段的中点都在直线3x+2y=0上.22.在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=2csinA.(1)求角C的值;(2)若c=,且S△ABC=,求a+b的值.参考答案:【考点】正弦定理.【分析】(1)由a=2csinA及正弦定理得sinA=2sinCsinA,又sinA≠0,可sinC=.又△ABC是锐角三角形,即可求C.(2)由面积公式,可解得ab=6,由余

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论