广东省广州市侨联中学2022-2023学年高二数学理模拟试题含解析_第1页
广东省广州市侨联中学2022-2023学年高二数学理模拟试题含解析_第2页
广东省广州市侨联中学2022-2023学年高二数学理模拟试题含解析_第3页
广东省广州市侨联中学2022-2023学年高二数学理模拟试题含解析_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省广州市侨联中学2022-2023学年高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.一条光线从点A(2,4)射出,倾斜角为60°角,遇x轴后反射,则反射光线的直线方程为A.

B.

C.

D.参考答案:C2.若,则P,Q的大小关系为A、 B、 C、 D、参考答案:A3.回归分析中,相关指数的值越大,说明残差平方和A.越小

B.越大

C.可能大也可能小

D.以上都不对参考答案:A略4.数列{an},已知对任意正整数n,a1+a2+a3+…+an=2n﹣1,则a12+a22+a32+…+an2等于()A.(2n﹣1)2 B. C. D.4n﹣1参考答案:C【考点】数列的求和;数列递推式.【分析】首先根据a1+a2+a3+…+an=2n﹣1,求出a1+a2+a3+…+an﹣1=2n﹣1﹣1,两式相减即可求出数列{an}的关系式,然后求出数列{an2}的递推式,最后根据等比数列求和公式进行解答.【解答】解:∵a1+a2+a3+…+an=2n﹣1…①∴a1+a2+a3+…+an﹣1=2n﹣1﹣1…②,①﹣②得an=2n﹣1,∴an2=22n﹣2,∴数列{an2}是以1为首项,4为公比的等比数列,∴a12+a22+a32+…+an2==,故选C.5.在中,若,,,则的面积为(

)A.

B.

C.1

D.参考答案:A6.点P在椭圆上运动,Q、R分别在两圆和上运动,则的取值范围为(

A.[3,5]

B

[2,5]

C

[3,6]

D

[2,6]参考答案:D7.观察下列各式:a+b=1.a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=(

)A.28 B.76 C.123 D.199参考答案:C【详解】由题观察可发现,,,,即故选C.考点:观察和归纳推理能力.8.抛物线的准线方程是(

)A. B. C. D.参考答案:A9.若复数满足,则实数a的取值范围是(

)A. B.[-1,1] C.

D.(-∞,-1]∪[1,+∞)参考答案:B【分析】利用复数模的公式即可求出实数的范围。【详解】因为,所以,解得.故答案选B【点睛】本题考查复数乘法公式以及模的计算,不等式的解,属于基础题。10.在区间(﹣1,2)中任取一个数x,则使2x>3的概率为()A. B. C. D.参考答案:A【考点】几何概型.【分析】本题是几何概型的考查,只要利用区间长度的比即可求概率.【解答】解:由2x>3,解得:x>,故满足条件的概率是:p==,故选:A.【点评】本题考查了几何概型的概率求法,是一道基础题.二、填空题:本大题共7小题,每小题4分,共28分11.设全集,,则

参考答案:12.设非空集合满足:当时,有.给出如下命题:①若,则;②若,则;③若,则;④若,则.其中所有正确命题的序号是

.参考答案:①②③略13.已知圆O的方程为x2+y2=2,圆M的方程为(x﹣1)2+(y﹣3)2=1,过圆M上任一点P作圆O的切线PA,若直线PA与圆M的另一个交点为Q,则当弦PQ的长度最大时,直线PA的斜率是.参考答案:1或﹣7【考点】直线与圆的位置关系.【专题】计算题.【分析】由题意得,弦PQ的长度最大为圆M的直径,用点斜式设出直线PA的方程,根据直线PA和圆O相切,圆心O到直线PA的距离等于圆O的半径,求出PA的斜率k,即得直线PA的方程.【解答】解:当直线PA过圆M的圆心M(1,3)时,弦PQ的长度最大为圆M的直径.设直线PA的斜率为k,由点斜式求得直线PA的方程为y﹣3=k(x﹣1),即kx﹣y+3﹣k=0.由直线PA和圆O相切得

=,∴k=1或k=﹣7,故答案为:1或﹣7.【点评】本题考查直线和圆的位置关系,点到直线的距离公式的应用,判断弦PQ的长度最大为圆M的直径是解题的关键.14.已知、是椭圆(>>0)的两个焦点,为椭圆上一点,且.若的面积为9,则=____________.参考答案:315.下列程序执行后输出的结果是S=________.i=1S=0WHILEi<=50

S=S+i

i=i+1WENDPRINTSEND参考答案:127516.抛物线的准线方程为

.

参考答案:略17.已知点P的极坐标是(1,),则过点P且垂直极轴的直线的极坐标方程是

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(1)解不等式x(9—x)>0,w.w.w.k.s.5.u.c.o.m

(2)解关于x的不等式x(1—ax)>0(a∈R)

参考答案:解析:(1)0<x<9(4分)(2)a=0时,

其解集为{x|x>0}a<0时,不等式化为,其解集为{x|x<或x>0}a>0时,不等式化为,其解集为{x|<x<0}对a分类正确,即得3分,a=0时得1分,其它2分19.(本小题满分9分)已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合.直线的参数方程为:(t为参数),曲线的极坐标方程为:.(Ⅰ)写出的直角坐标方程,并指出是什么曲线;(Ⅱ)设直线与曲线相交于、两点,求值.参考答案:解:(Ⅰ),,由得:

所以曲线的直角坐标方程为,它是以为圆心,半径为的圆.(Ⅱ)把代入整理得,……7分设其两根分别为、,则,另解:化直线参数方程为普通方程,然后求圆心到直线距离,再用垂径定理求得的值.20.在平面直角坐标系xOy中,已知圆x2+y2=4上有且只有四个点到直线12x﹣5y+c=0的距离为1,求实数c的取值范围. 参考答案:【考点】直线与圆的位置关系. 【专题】直线与圆. 【分析】求出圆心,求出半径,圆心到直线的距离小于半径和1的差即可. 【解答】解:圆半径为2, 圆心(0,0)到直线12x﹣5y+c=0的距离小于1,即=<1, 则c的取值范围是(﹣13,13). 所求c∈(﹣13,13) 【点评】此题考查了圆与直线的位置关系,圆心到直线的距离小于半径和1的差,此时4个,等于3个,大于这个差小于半径和1的和是2个. 21.数列的通项公式为an=n2-6n+5,问:(1)数列中有多少项是负数?(2)n为何值时,an有最小值?并求出最小值.参考答案:解析:(1)由an为负数,得n2-6n+5<0,解得1<n<5.∵n∈N*,故n=2,3,4,即数列有3项为负数,分别是第2项和第3项.第四项。(2)∵an=n2-6n+5=(n-3)2-4∴对称轴为n=3故当n=3时,an有最小值,最小值为-4.22.(1)若命题“?x∈R,2x2﹣3ax+9<0”为假命题,求实数a的取值范围;(2)设p:|4x﹣3|≤1,命题q:x2﹣(2m+1)x+m(m+1)≤0.若¬p是¬q的必要而不充分条件,求实数a的取值范围.参考答案:【考点】必要条件、充分条件与充要条件的判断.【专题】转化思想;转化法;简易逻辑.【分析】(1)根据特称命题为假命题,转化为命题的否定为真命题,利用判别式△进行求解即可.(2)根据绝对值的性质和十字相乘法分别求出命题p和q,再根据¬p是¬q的必要而不充分条件,可以推出p?q,再根据子集的性质进行求解;【解答】解:(1)若命题“?x∈R,2x2﹣3ax+9<0”为假命题,即命题“?x∈R,2x2﹣3ax+9≥0”为真命题,则判别式△=9a2﹣4×2×9≤0,则a2≤8,即﹣2≤a≤2,即实数a的取值范围是[﹣2,2].(2)∵p:|4x﹣3|≤1;p:﹣1≤4x﹣3≤1,解得≤x≤1,由x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论