下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省云浮市白石中学2023年高一数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列四组函数中,表示同一函数的是()A. B.f(x)=lgx2,g(x)=2lgxC. D.参考答案:A【考点】判断两个函数是否为同一函数.【分析】根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数.【解答】解:对于A,f(x)=|x|(x∈R),与g(x)==|x|(x∈R)的定义域相同,对应关系也相同,∴是同一函数;对于B,f(x)=lgx2=2lg|x|(x≠0),与g(x)=2lgx(x>0)的定义域不同,对应关系也不同,∴不是同一函数;对于C,f(x)==x+1(x≠1),与g(x)=x﹣1(x∈R)的定义域不同,对应关系也不同,∴不是同一函数;对于D,f(x)=?=(x≥1),与g(x)=(x∈R)的定义域不同,∴不是同一函数.故选:A.2.函数f(x)=ax与g(x)=ax-a的图象有可能是下图中的(
)参考答案:D3.过点平行于直线的直线方程为()A.
B.C. D.参考答案:A4.设,,,则它们的大小关系是(
)A.
B.
C.
D.参考答案:A5.如图,测量员在水平线上点B处测量得一塔AD塔顶仰角为30°,当他前进10m没到达点C处测塔顶仰角为45°,则塔高为:A.
B.
C.
D.参考答案:C6.已知,且tanα>1,则cosα=
()A.-B.-C.
D.参考答案:C解析:结合易得7.已知为平面,命题p:若,则;命题q:若上不共线的三点到的距离相等,则.对以上两个命题,下列结论中正确的是
A.命题“p且q”为真
B.命题“p或”为假
C.命题“p或q”为假
D.命题“”且“”为假参考答案:C8.在四边形ABCD中,且,则四边形ABCD的形状一定是(
)A.正方形 B.矩形 C.菱形 D.等腰梯形参考答案:C【分析】根据向量相等可知对边平行且相等,四边形为平行四边形,根据模相等可知邻边相等,所以四边形为菱形.【详解】因为,所以,四边形是平行四边形又,所以,四边形是菱形,故选C.9.已知等差数列{an}的公差,若{an}的前10项之和大于前21项之和,则(
)A. B. C. D.参考答案:C【分析】设等差数列的前项和为,由并结合等差数列的下标和性质可得出正确选项.【详解】设等差数列的前项和为,由,得,可得,故选:C.【点睛】本题考查等差数列性质的应用,解题时要充分利用等差数列下标和与等差中项的性质,可以简化计算,考查分析问题和解决问题的能力,属于中等题.10.设集合,则所有的交集为……(
)(A)
(B)
(C)
(D)参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.在△ABC中,,动点P在线段AM上,则的最小值为______.参考答案:【分析】先由确定M为BC中点,由平行四边形法则得到,利用计算得出。【详解】点M是BC的中点设,则即当时,的最小值为【点睛】本题考查了向量的数量积运算和向量的平行四边形法则,将转化为是关键。12.的值为
▲
.参考答案:13.在上总有意义,求的取值范围_______参考答案:略14.函数的定义域为
(用区间表示).参考答案:解得,即定义域为.15.不等式的解集为,则实数的取值范围是
参考答案:16.已知向量为单位向量,向量,且,则向量的夹角为__________.参考答案:因为,所以,所以,所以,则.17.已知正数满足,则的最小值为
.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.给出下列命题:
①既是奇函数,又是偶函数;②和为同一函数;③已知为定义在R上的奇函数,且在上单调递增,则在上为增函数;④函数的值域为.其中正确命题的序号是
.参考答案:略19.(本小题满分12分)如图,在正方体中,分别为棱的中点.(Ⅰ)求证:∥平面;(Ⅱ)求异面直线与所成角.参考答案:(Ⅱ)连接,四边形是平行四边形
…8分又∥就是异面直线与所成角
…10分在正方体中即异面直线与所成角为
……12分20.参考答案:21.已知向量,函数,且图象上一个最高点为,与最近的一个最低点的坐标为.(1)求函数的解析式;(2)设为常数,判断方程在区间上的解的个数;(3)在锐角中,若,求的取值范围.参考答案:解:(1).
………3分图象上一个最高点为,与最近的一个最低点的坐标为,,,于是.
………5分所以.
………6分(2)当时,,由图象可知:当时,在区间上有二解;
………8分当或时,在区间上有一解;当或时,在区间上无解.
………10分(3)在锐角中,,.又,故,.
………11分在锐角中,.
………13分,,
………15分即的取值范围是
………16分略22.已知向量,满足,,且.(1)求;(2)在△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 望海潮课件教学课件
- 《工伤及工伤保险》课件
- 篮球运球课件
- 材料员述职报告范文
- 病故报告范文
- 个人与公司借款协议书范本
- 中职班会教案教学课件教学课件教学
- 2024年度文化艺术创作保密合同
- 《涂料工程施工》课件
- 2024年度钢筋市场销售合同3篇
- 喷涂设备订购合同范例
- 山东省济南市高新区2024-2025学年九年级上学期期中语文试题
- DB52T 1177-2017 中低品位胶磷矿选矿技术规程
- 2024年电梯安全总监安全员考试题参考
- 【新教材】2024-2025学年统编版语文七年级上册 第四单元综合性学习《少年正是读书时》课件5
- MOOC 营销管理-电子科技大学 中国大学慕课答案
- 工程全过程造价咨询服务方案(技术方案)
- 有限空间管理档案台账模板
- 服装英语:服装专业单词汇总3
- 电(光)缆敷设施工检查记录
- 劳模创新工作室创建申报材料表(含内容)
评论
0/150
提交评论