下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
六、课时教学设计第一课时函数的图象(一)教学内容:函数的图象教学目标:了解函数y=Asin(ωx+φ)的现实背景,经历匀速圆周运动的数学建模过程,进一体会三角函数与现实世界的密切联系,发展数学建模素养.参数φ,ω,A对函数y=Asin(ωx+φ)图象的影响,,发展数学抽象、逻辑推理与直观想象的素养。(三)教学重点及难点:1.重点:用函数模型来刻画一般的匀速圆周运动的建模过程;2.难点:将实际问题抽象为数学问题的过程,理解参数φ,ω,A在圆周运动中的实际意义。(四)教学过程:筒车是中国古代发明的一种灌溉工具,它省时、省力,环保、经济,现代农村至今还在大量使用.明朝科学家徐光启在《农政全书》中用图示描绘了人们利用筒车轮的圆周运动进行灌溉的工作原理(用信息技术呈现筒车运动的实际情境).问题1:假定在水流量稳定的情况下,筒车上的每一个盛水筒都作匀速圆周运动.如果将这个筒车抽象成一个圆,水筒抽象成一个质点,你能用一个合适的函数模型来刻画盛水筒距离水面的相对高度与时间的关系吗?师生活动:教师利用多媒体展示筒车运动的真实情境,学生进行观察、思考、交流,鼓励学生自主探究.当学生遇到困难时,教师可以提出问题2,采用追问的方式进行引导,让学生在抽象简化的基础上再进行思考分析;若学生能自主地从数学的角度进行分析,则鼓励他们进行展示交流.预设:因筒车上盛水筒的运动具有周期性,可以考虑利用三角函数模型刻画它的运动规律.设计意图:通过筒车模型引入,体现数学地实际价值,使学生感受发现问题、提出问题的过程,并尝试分析问题和解决问题.问题2:筒车运动模型中,盛水筒的运动周而复始,具有周期性,可以考虑用三角函数模型去刻画它的运动规律,如果将筒车抽象为圆,盛水筒抽象为圆上的点P(图),经过时t后,盛水筒距离水面的高度H与哪些量有关?它们之间有怎样的关系呢?师生活动:教师进行适时引导,并借助信息技术用几何形式动态呈现点P的运动状态;然后由学生经过讨论,分析出问题中与变量t和H相关的量—筒车转轮的中心O到水面的距离h,筒车的半径r,筒车转动的角速度ω,盛水筒的初始位置P0及其对应的初始角φ;再引导学生寻求变量t与H之间的等量关系.学生建立适当的直角坐标系,并通过自主探究获得函数关系,教师将结果统一引导到函数H=rsin(ωt+φ)+h.如图,相关的量有:水车半径r,水车中心距水面的高度h;水车转动的角速度ω;初始位置所对应的角φ;水车转动的时间t;盛水筒距离水面的相对高度H;若以O为原点,以与水平面平行的直线为x轴,建立直角坐标系.设t=0时,盛水筒位于P0,以Ox为始边,OP为终边的角为φ,经过ts后运动到点P(x,y).于是,以Ox为始边,OP为终边的角为ωt+φ,并且有y=rsin(ωt+φ)①,所盛水筒距离水面的高度H与时间t的关系是H=函数②就是要建立的数学模型,只要将它的性质研究清楚了.由于h为常量,我们可以只研究函数①的性质设计意图:结合筒车模型,建立三角函数的数学模型,表示其上质点的匀速圆周运动,引出本节的核心内容;让学生经历数学建模的全过程,引导学生学会用数学的眼光看现实世界,用数学语言描述世界.问题3:摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色。某摩天轮最高点距离地面高度为120m,转盘直径为110m,设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min.(1)游客甲坐上摩天轮的座舱,开始转动tmin后距离地面的高度为Hm,求在转动一周的过程中,H关于t的函数解析式;(2)求游客甲在开始转动5min后距离地面的高度。师生活动:引导学生思考摩天轮上的座舱运动可以近似地看作是质点在圆周上做匀速旋转。在旋转过程中,游客距离地面的高度H呈现周而复始的变化,因此可以考虑用三角函数来刻画。解:如图,设座舱距离地面最近的位置为点P,以轴心O为原点,与地面平行的直线为x轴建立直角坐标系.(1)设t=0min时,游客甲位于点P(O,-55),以OP为终边的角为-π2;根据摩天轮转一周大约需要30min,可知座舱转动的角速度约为π15(2)当t=5时,H=55所以,游客甲在开始转动5min后距离地面的高度约为37.5m,设计意图:培养学建模思想,应用模型,学生在思考、探索和交流的过程中获得了对知识点较为全面的体验和理解,加强了团队合作意识.(五)课堂小结:函数的建立思想方法:建模思想,类比思想(六)目标检测:在问题3中,若甲、乙两人分别坐在两个相邻的座舱里,在运行一周的过程中,求两人距离地面的高度差h(单位:m)关于t的函数解析式,并求高度差的最大值(精确到0.1).解:甲、乙两人的位置分别用点A,B表示,则∠AOB=π24.经过tmin后甲距离地面的高度为H1=55sinπ15t-π2+65点B相对于点A始终落后π24.rad,此时乙距离地面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度农业科技企业劳动合同保密协议范本2篇
- 二零二五年度小微企业担保合同标准文本3篇
- 二零二五年度施工现场安全管理人员职责及考核合同3篇
- 二零二五年医疗机构病房楼场地租赁及医疗设备租赁协议3篇
- 2025年度电影发行融资居间服务协议3篇
- 二零二五年度文化遗产保护项目工程合同样本3篇
- 运动课程设计与展示
- 二零二五年度办公楼能源消耗监测与节能服务合同2篇
- 二零二五年度按揭车辆转让与汽车租赁服务结合合同2篇
- 2025年度施工安全用电安全保障措施合同范本2份3篇
- 甘肃省会宁二中2025届高考仿真模拟数学试卷含解析
- 节约集约建设用地标准 DG-TJ08-2422-2023
- 《氮化硅陶瓷》课件
- 楼面经理述职报告
- 山东省济南市历城区2024-2025学年二年级上学期期末数学模拟检测卷(含答案)
- 心衰病的中医治疗
- 肌力的评定与护理
- DB11T 880-2020 电动汽车充电站运营管理规范
- 人工智能视域下数字媒体技术类课程学生创造力培养研究
- 工业机器人论文3000字(合集4篇)
- 第三章《地球的面貌》-2024-2025学年七年级上册地理单元测试卷(湘教版2024)
评论
0/150
提交评论