版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是().A. B. C. D.2.一个空间几何体的正视图是长为4,宽为的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为()A. B. C. D.3.函数在的图象大致为()A. B.C. D.4.若复数,则()A. B. C. D.205.已知双曲线:(,)的右焦点与圆:的圆心重合,且圆被双曲线的一条渐近线截得的弦长为,则双曲线的离心率为()A.2 B. C. D.36.已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是()A. B.C. D.7.已知函数(,,),将函数的图象向左平移个单位长度,得到函数的部分图象如图所示,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.设函数,若在上有且仅有5个零点,则的取值范围为()A. B. C. D.9.已知圆M:x2+y2-2ay=0a>0截直线x+y=0A.内切 B.相交 C.外切 D.相离10.给出下列四个命题:①若“且”为假命题,则﹑均为假命题;②三角形的内角是第一象限角或第二象限角;③若命题,,则命题,;④设集合,,则“”是“”的必要条件;其中正确命题的个数是()A. B. C. D.11.点为的三条中线的交点,且,,则的值为()A. B. C. D.12.已知满足,则的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.执行右边的程序框图,输出的的值为.14.已知在等差数列中,,,前n项和为,则________.15.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm2,体积是_____16.春节期间新型冠状病毒肺炎疫情在湖北爆发,为了打赢疫情防控阻击战,我省某医院选派2名医生,6名护士到湖北、两地参加疫情防控工作,每地一名医生,3名护士,其中甲乙两名护士不到同一地,共有__________种选派方法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)第十三届全国人大常委会第十一次会议审议的《固体废物污染环境防治法(修订草案)》中,提出推行生活垃圾分类制度,这是生活垃圾分类首次被纳入国家立法中.为了解某城市居民的垃圾分类意识与政府相关法规宣传普及的关系,对某试点社区抽取户居民进行调查,得到如下的列联表.分类意识强分类意识弱合计试点后试点前合计已知在抽取的户居民中随机抽取户,抽到分类意识强的概率为.(1)请将上面的列联表补充完整,并判断是否有的把握认为居民分类意识的强弱与政府宣传普及工作有关?说明你的理由;(2)已知在试点前分类意识强的户居民中,有户自觉垃圾分类在年以上,现在从试点前分类意识强的户居民中,随机选出户进行自觉垃圾分类年限的调查,记选出自觉垃圾分类年限在年以上的户数为,求分布列及数学期望.参考公式:,其中.下面的临界值表仅供参考18.(12分)已知矩阵的一个特征值为3,求另一个特征值及其对应的一个特征向量.19.(12分)选修44:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C的参数方程为(α为参数).以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为,点P为曲线C上的动点,求点P到直线l距离的最大值.20.(12分)如图,三棱柱的所有棱长均相等,在底面上的投影在棱上,且∥平面(Ⅰ)证明:平面平面;(Ⅱ)求直线与平面所成角的余弦值.21.(12分)已知函数,.(1)判断函数在区间上的零点的个数;(2)记函数在区间上的两个极值点分别为、,求证:.22.(10分)如图,在正四棱锥中,底面正方形的对角线交于点且(1)求直线与平面所成角的正弦值;(2)求锐二面角的大小.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
求出在的解析式,作出函数图象,数形结合即可得到答案.【详解】当时,,,,又,所以至少小于7,此时,令,得,解得或,结合图象,故.故选:B.【点睛】本题考查不等式恒成立求参数的范围,考查学生数形结合的思想,是一道中档题.2、B【解析】
由三视图确定原几何体是正三棱柱,由此可求得体积.【详解】由题意原几何体是正三棱柱,.故选:B.【点睛】本题考查三视图,考查棱柱的体积.解题关键是由三视图不愿出原几何体.3、C【解析】
先根据函数奇偶性排除B,再根据函数极值排除A;结合特殊值即可排除D,即可得解.【详解】函数,则,所以为奇函数,排除B选项;当时,,所以排除A选项;当时,,排除D选项;综上可知,C为正确选项,故选:C.【点睛】本题考查根据函数解析式判断函数图像,注意奇偶性、单调性、极值与特殊值的使用,属于基础题.4、B【解析】
化简得到,再计算模长得到答案.【详解】,故.故选:.【点睛】本题考查了复数的运算,复数的模,意在考查学生的计算能力.5、A【解析】
由已知,圆心M到渐近线的距离为,可得,又,解方程即可.【详解】由已知,,渐近线方程为,因为圆被双曲线的一条渐近线截得的弦长为,所以圆心M到渐近线的距离为,故,所以离心率为.故选:A.【点睛】本题考查双曲线离心率的问题,涉及到直线与圆的位置关系,考查学生的运算能力,是一道容易题.6、A【解析】
由题知,利用求出,再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,的图象与直线的相邻交点间的距离为,所以的周期为,则,所以,由正弦函数和正切函数图象可知正确.故选:A.【点睛】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解.7、B【解析】
先根据图象求出函数的解析式,再由平移知识得到的解析式,然后分别找出和的等价条件,即可根据充分条件,必要条件的定义求出.【详解】设,根据图象可知,,再由,取,∴.将函数的图象向右平移个单位长度,得到函数的图象,∴.,,令,则,显然,∴是的必要不充分条件.故选:B.【点睛】本题主要考查利用图象求正(余)弦型函数的解析式,三角函数的图形变换,二倍角公式的应用,充分条件,必要条件的定义的应用,意在考查学生的数学运算能力和逻辑推理能力,属于中档题.8、A【解析】
由求出范围,结合正弦函数的图象零点特征,建立不等量关系,即可求解.【详解】当时,,∵在上有且仅有5个零点,∴,∴.故选:A.【点睛】本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题.9、B【解析】化简圆M:x2+(y-a)2=a又N(1,1),r10、B【解析】
①利用真假表来判断,②考虑内角为,③利用特称命题的否定是全称命题判断,④利用集合间的包含关系判断.【详解】若“且”为假命题,则﹑中至少有一个是假命题,故①错误;当内角为时,不是象限角,故②错误;由特称命题的否定是全称命题知③正确;因为,所以,所以“”是“”的必要条件,故④正确.故选:B.【点睛】本题考查命题真假的问题,涉及到“且”命题、特称命题的否定、象限角、必要条件等知识,是一道基础题.11、B【解析】
可画出图形,根据条件可得,从而可解出,然后根据,进行数量积的运算即可求出.【详解】如图:点为的三条中线的交点,由可得:,又因,,.故选:B【点睛】本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题.12、C【解析】
设,则的几何意义为点到点的斜率,利用数形结合即可得到结论.【详解】解:设,则的几何意义为点到点的斜率,作出不等式组对应的平面区域如图:由图可知当过点的直线平行于轴时,此时成立;取所有负值都成立;当过点时,取正值中的最小值,,此时;故的取值范围为;故选:C.【点睛】本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键.对于直线斜率要注意斜率不存在的直线是否存在.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】初始条件成立方;运行第一次:成立;运行第二次:不成立;输出的值:结束所以答案应填:考点:1、程序框图;2、定积分.14、39【解析】
设等差数列公差为d,首项为,再利用基本量法列式求解公差与首项,进而求得即可.【详解】设等差数列公差为d,首项为,根据题意可得,解得,所以.故答案为:39【点睛】本题考查等差数列的基本量计算以及前n项和的公式,属于基础题.15、20+45,8【解析】试题分析:由题意得,该几何体为三棱柱,故其表面积S=2×1体积V=12×4×2×2=8,故填:20+4考点:1.三视图;2.空间几何体的表面积与体积.16、24【解析】
先求出每地一名医生,3名护士的选派方法的种数,再减去甲乙两名护士到同一地的种数即可.【详解】解:每地一名医生,3名护士的选派方法的种数有,若甲乙两名护士到同一地的种数有,则甲乙两名护士不到同一地的种数有.故答案为:.【点睛】本题考查利用间接法求排列组合问题,正难则反,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)有的把握认为居民分类意识强与政府宣传普及工作有很大关系.见解析(2)分布列见解析,期望为1.【解析】
(1)由在抽取的户居民中随机抽取户,抽到分类意识强的概率为可得列联表,然后计算后可得结论;(2)由已知的取值分别为,分别计算概率得分布列,由公式计算出期望.【详解】解:(1)根据在抽取的户居民中随机抽取户,到分类意识强的概率为,可得分类意识强的有户,故可得列联表如下:分类意识强分类意识弱合计试点后试点前合计因为的观测值,所以有的把握认为居民分类意识强与政府宣传普及工作有很大关系.(2)现在从试点前分类意识强的户居民中,选出户进行自觉垃圾分类年限的调查,记选出自觉垃圾分类年限在年以上的户数为,则0,1,2,3,故,,,,则的分布列为.【点睛】本题考查独立性检验,考查随机变量的概率分布列和数学期望.考查学生的数据处理能力和运算求解能力.18、另一个特征值为,对应的一个特征向量【解析】
根据特征多项式的一个零点为3,可得,再回代到方程即可解出另一个特征值为,最后利用求特征向量的一般步骤,可求出其对应的一个特征向量.【详解】矩阵的特征多项式为:,是方程的一个根,,解得,即方程即,,可得另一个特征值为:,设对应的一个特征向量为:则由,得得,令,则,所以矩阵另一个特征值为,对应的一个特征向量【点睛】本题考查了矩阵的特征值以及特征向量,需掌握特征多项式的计算形式,属于基础题.19、(1),(2)【解析】
试题分析:利用将极坐标方程化为直角坐标方程:化简为ρcosθ+ρsinθ=1,即为x+y=1.再利用点到直线距离公式得:设点P的坐标为(2cosα,sinα),得P到直线l的距离试题解析:解:化简为ρcosθ+ρsinθ=1,则直线l的直角坐标方程为x+y=1.设点P的坐标为(2cosα,sinα),得P到直线l的距离,dmax=.考点:极坐标方程化为直角坐标方程,点到直线距离公式20、(Ⅰ)见解析(Ⅱ)【解析】
(Ⅰ)连接交于点,连接,由于平面,得出,根据线线位置关系得出,利用线面垂直的判定和性质得出,结合条件以及面面垂直的判定,即可证出平面平面;(Ⅱ)根据题意,建立空间直角坐标系,利用空间向量法分别求出和平面的法向量,利用空间向量线面角公式,即可求出直线与平面所成角的余弦值.【详解】解:(Ⅰ)证明:连接交于点,连接,则平面平面,平面,,为的中点,为的中点,平面,,平面,平面,平面平面(Ⅱ)建立如图所示空间直角坐标系,设则,,,,,设平面的法向量为,则,取得,设直线与平面所成角为,直线与平面所成角的余弦值为.【点睛】本题考查面面垂直的判定以及利用空间向量法求线面角的余弦值,考查空间想象能力和推理能力.21、(1);(2)见解析.【解析】
(1)利用导数分析函数在区间上的单调性与极值,结合零点存在定理可得出结论;(2)设函数的极大值点和极小值点分别为、,由(1)知,,且满足,,于是得出,由得,利用正切函数的单调性推导出,再利用正弦函数的单调性可得出结论.【详解】(1),,,当时,,,,则函数在上单调递增;当时,,,,则函数在上单调递减;当时,,,,则函数在上单调递增.,,,,.所以,函数在与不存在零点,在区间和上各存在一个零点.综上所述,函数在区间上的零点的个数为;(2),.由(1)得,在区间与上存在零点,所以,函数在区间与上各存在一个极值点、,且,,且满足即,,,又,即,,,,,由在上单调递增,得,再由在上单调递减,得,即.【点睛】本题考查利用导数研究函数的零点个数问题,同时也考查了利用导数证明不等式,考查分析问题和解决问题的能力,属于难题.22、(1);(2).【解析】
(1)以分别为轴,轴,轴,建立空间直角坐标系,设底
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023-2024学年北京初三九年级上学期同步测试化学试题及答案
- 湖北省咸宁市2023-2024学年高一下学期期末考试历史试卷
- 工程水文学课程论文要求及格式
- 工程实训报告
- 2.3 地域文化与城乡景观(课件)人教版(2019)必修二地理高一下学期
- 人教部编版八年级语文上册《“飞天”凌空-跳水姑娘吕伟夺魁记 》公开示范课教学 课件
- KG316T时控开关使用说明
- 2024年阜阳从业资格证客运考试题库
- 2024年防洪施工合同
- 2024年钢化玻璃采购合同范本
- 北师大版五年级数学上册全册教案教学设计及教学反思
- 智慧校园网络安全等保设计方案
- 图书管理系统概要设计概要
- 电工技术基础——共发射极基本放大电路
- 广州版六年级上册英语作文范文汇总
- 触电急救原则和措施
- 邦普水冷模块机控制器使用说明书
- 小学五年级下册综合实践活动.节电小贴士---(18张)ppt
- GST200火灾报警控制器(联动型)安装使用说明书
- (整理)光学材料大全.
- 鲁教版六年级数学上册全部知识点
评论
0/150
提交评论