版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一物体作变速直线运动,其曲线如图所示,则该物体在间的运动路程为()m.A.1 B. C. D.22.如图是国家统计局公布的年入境游客(单位:万人次)的变化情况,则下列结论错误的是()A.2014年我国入境游客万人次最少B.后4年我国入境游客万人次呈逐渐增加趋势C.这6年我国入境游客万人次的中位数大于13340万人次D.前3年我国入境游客万人次数据的方差小于后3年我国入境游客万人次数据的方差3.在复平面内,复数(,)对应向量(O为坐标原点),设,以射线Ox为始边,OZ为终边旋转的角为,则,法国数学家棣莫弗发现了棣莫弗定理:,,则,由棣莫弗定理可以导出复数乘方公式:,已知,则()A. B.4 C. D.164.已知抛物线:的焦点为,准线为,是上一点,直线与抛物线交于,两点,若,则为()A. B.40 C.16 D.5.已知数列满足,且,则的值是()A. B. C.4 D.6.一个四面体所有棱长都是4,四个顶点在同一个球上,则球的表面积为()A. B. C. D.7.已知抛物线,F为抛物线的焦点且MN为过焦点的弦,若,,则的面积为()A. B. C. D.8.已知向量,则()A.∥ B.⊥ C.∥() D.⊥()9.已知函数,下列结论不正确的是()A.的图像关于点中心对称 B.既是奇函数,又是周期函数C.的图像关于直线对称 D.的最大值是10.已知定义在上的奇函数满足:(其中),且在区间上是减函数,令,,,则,,的大小关系(用不等号连接)为()A. B.C. D.11.已知向量,,=(1,),且在方向上的投影为,则等于()A.2 B.1 C. D.012.已知F为抛物线y2=4x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,则||FA|﹣|FB||的值等于()A. B.8 C. D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在上单调递增,则实数a值范围为_________.14.已知,为正实数,且,则的最小值为________________.15.的展开式中常数项是___________.16.已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,且.(1)请给出的一组值,使得成立;(2)证明不等式恒成立.18.(12分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F分别是棱AB,PC的中点.求证:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.19.(12分)如图1,在等腰梯形中,两腰,底边,,,是的三等分点,是的中点.分别沿,将四边形和折起,使,重合于点,得到如图2所示的几何体.在图2中,,分别为,的中点.(1)证明:平面.(2)求直线与平面所成角的正弦值.20.(12分)如图,在四棱锥中,底面,,,,,点为棱的中点.(1)证明::(2)求直线与平面所成角的正弦值;(3)若为棱上一点,满足,求二面角的余弦值.21.(12分)已知函数.(1)若是函数的极值点,求的单调区间;(2)当时,证明:22.(10分)如图,在四棱锥中,底面为等腰梯形,,为等腰直角三角形,,平面底面,为的中点.(1)求证:平面;(2)若平面与平面的交线为,求二面角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由图像用分段函数表示,该物体在间的运动路程可用定积分表示,计算即得解【详解】由题中图像可得,由变速直线运动的路程公式,可得.所以物体在间的运动路程是.故选:C【点睛】本题考查了定积分的实际应用,考查了学生转化划归,数形结合,数学运算的能力,属于中档题.2、D【解析】
ABD可通过统计图直接分析得出结论,C可通过计算中位数判断选项是否正确.【详解】A.由统计图可知:2014年入境游客万人次最少,故正确;B.由统计图可知:后4年我国入境游客万人次呈逐渐增加趋势,故正确;C.入境游客万人次的中位数应为与的平均数,大于万次,故正确;D.由统计图可知:前年的入境游客万人次相比于后年的波动更大,所以对应的方差更大,故错误.故选:D.【点睛】本题考查统计图表信息的读取以及对中位数和方差的理解,难度较易.处理问题的关键是能通过所给统计图,分析出对应的信息,对学生分析问题的能力有一定要求.3、D【解析】
根据复数乘方公式:,直接求解即可.【详解】,.故选:D【点睛】本题考查了复数的新定义题目、同时考查了复数模的求法,解题的关键是理解棣莫弗定理,将复数化为棣莫弗定理形式,属于基础题.4、D【解析】
如图所示,过分别作于,于,利用和,联立方程组计算得到答案.【详解】如图所示:过分别作于,于.,则,根据得到:,即,根据得到:,即,解得,,故.故选:.【点睛】本题考查了抛物线中弦长问题,意在考查学生的计算能力和转化能力.5、B【解析】由,可得,所以数列是公比为的等比数列,所以,则,则,故选B.点睛:本题考查了等比数列的概念,等比数列的通项公式及等比数列的性质的应用,试题有一定的技巧,属于中档试题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,等比数列的性质和在使用等比数列的前n项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.6、A【解析】
将正四面体补成正方体,通过正方体的对角线与球的半径关系,求解即可.【详解】解:如图,将正四面体补形成一个正方体,正四面体的外接球与正方体的外接球相同,∵四面体所有棱长都是4,∴正方体的棱长为,设球的半径为,则,解得,所以,故选:A.【点睛】本题主要考查多面体外接球问题,解决本题的关键在于,巧妙构造正方体,利用正方体的外接球的直径为正方体的对角线,从而将问题巧妙转化,属于中档题.7、A【解析】
根据可知,再利用抛物线的焦半径公式以及三角形面积公式求解即可.【详解】由题意可知抛物线方程为,设点点,则由抛物线定义知,,则.由得,则.又MN为过焦点的弦,所以,则,所以.故选:A【点睛】本题考查抛物线的方程应用,同时也考查了焦半径公式等.属于中档题.8、D【解析】
由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论.【详解】∵向量(1,﹣2),(3,﹣1),∴和的坐标对应不成比例,故、不平行,故排除A;显然,•3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),显然,和的坐标对应不成比例,故和不平行,故排除C;∴•()=﹣2+2=0,故⊥(),故D正确,故选:D.【点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.9、D【解析】
通过三角函数的对称性以及周期性,函数的最值判断选项的正误即可得到结果.【详解】解:,正确;,为奇函数,周期函数,正确;,正确;D:,令,则,,,,则时,或时,即在上单调递增,在和上单调递减;且,,,故D错误.故选:.【点睛】本题考查三角函数周期性和对称性的判断,利用导数判断函数最值,属于中档题.10、A【解析】因为,所以,即周期为4,因为为奇函数,所以可作一个周期[-2e,2e]示意图,如图在(0,1)单调递增,因为,因此,选A.点睛:函数对称性代数表示(1)函数为奇函数,函数为偶函数(定义域关于原点对称);(2)函数关于点对称,函数关于直线对称,(3)函数周期为T,则11、B【解析】
先求出,再利用投影公式求解即可.【详解】解:由已知得,由在方向上的投影为,得,则.故答案为:B.【点睛】本题考查向量的几何意义,考查投影公式的应用,是基础题.12、C【解析】
将直线方程代入抛物线方程,根据根与系数的关系和抛物线的定义即可得出的值.【详解】F(1,0),故直线AB的方程为y=x﹣1,联立方程组,可得x2﹣6x+1=0,设A(x1,y1),B(x2,y2),由根与系数的关系可知x1+x2=6,x1x2=1.由抛物线的定义可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故选C.【点睛】本题考查了抛物线的定义,直线与抛物线的位置关系,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由在上恒成立可求解.【详解】,令,∵,∴,又,,从而,令,问题等价于在时恒成立,∴,解得.故答案为:.【点睛】本题考查函数的单调性,解题关键是问题转化为恒成立,利用换元法和二次函数的性质易求解.14、【解析】
由,为正实数,且,可知,于是,可得,再利用基本不等式即可得出结果.【详解】解:,为正实数,且,可知,,.当且仅当时取等号.的最小值为.故答案为:.【点睛】本题考查了基本不等式的性质应用,恰当变形是解题的关键,属于中档题.15、-160【解析】试题分析:常数项为.考点:二项展开式系数问题.16、【解析】在圆上其他位置任取一点B,设圆半径为R,其中满足条件AB弦长介于与之间的弧长为•2πR,则AB弦的长度大于等于半径长度的概率P==;故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(答案不唯一)(2)证明见解析【解析】
(1)找到一组符合条件的值即可;(2)由可得,整理可得,两边同除可得,再由可得,两边同时加可得,即可得证.【详解】解析:(1)(答案不唯一)(2)证明:由题意可知,,因为,所以.所以,即.因为,所以,因为,所以,所以.【点睛】考查不等式的证明,考查不等式的性质的应用.18、(1)见解析;(2)见解析【解析】
(1)取的中点构造平行四边形,得到,从而证出平面;(2)先证平面,再利用面面垂直的判定定理得到平面平面.【详解】证明:(1)如图,取的中点,连接,,是棱的中点,底面是矩形,,且,又,分别是棱,的中点,,且,,且,四边形为平行四边形,,又平面,平面,平面;(2),点是棱的中点,,又,,平面,平面,,底面是矩形,,平面,平面,且,平面,又平面,,,,又平面,平面,且,平面,又平面,平面平面.【点睛】本题主要考查线面平行的判定,面面垂直的判定,首选判定定理,是中档题.19、(1)证明见解析(2)【解析】
(1)先证,再证,由可得平面,从而推出平面;(2)建立空间直角坐标系,求出平面的法向量与,坐标代入线面角的正弦值公式即可得解.【详解】(1)证明:连接,,由图1知,四边形为菱形,且,所以是正三角形,从而.同理可证,,所以平面.又,所以平面,因为平面,所以平面平面.易知,且为的中点,所以,所以平面.(2)解:由(1)可知,,且四边形为正方形.设的中点为,以为原点,以,,所在直线分别为,,轴,建立空间直角坐标系,则,,,,,所以,,.设平面的法向量为,由得取.设直线与平面所成的角为,所以,所以直线与平面所成角的正弦值为.【点睛】本题考查线面垂直的证明,直线与平面所成的角,要求一定的空间想象能力、运算求解能力和推理论证能力,属于基础题.20、(1)证明见解析(2)(3)【解析】
(1)根据题意以为坐标原点,建立空间直角坐标系,写出各个点的坐标,并表示出,由空间向量数量积运算即可证明.(2)先求得平面的法向量,即可求得直线与平面法向量夹角的余弦值,即为直线与平面所成角的正弦值;(3)由点在棱上,设,再由,结合,由空间向量垂直的坐标关系求得的值.即可表示出.求得平面和平面的法向量,由空间向量数量积的运算求得两个平面夹角的余弦值,再根据二面角的平面角为锐角即可确定二面角的余弦值.【详解】(1)证明:∵底面,,以为坐标原点,建立如图所示的空间直角坐标系,∵,,点为棱的中点.∴,,,,,,.(2),设平面的法向量为.则,代入可得,令解得,即,设直线与平面所成角为,由直线与平面夹角可知所以直线与平面所成角的正弦值为.(3),由点在棱上,设,故,由,得,解得,即,设平面的法向量为,由,得,令,则取平面的法向量,则二面角的平面角满足,由图可知,二面角为锐二面角,故二面角的余弦值为.【点睛】本题考查了空间向量的综合应用,由空间向量证明线线垂直,求直线与平面夹角及平面与平面形成的二面角大小,计算量较大,属于中档题.21、(1)递减区间为(-1,0),递增区间为(2)见解析【解析】
(1)根据函数解析式,先求得导函数,由是函数的极值点可求得参数.求得函数定义域,并根据导函数的符号即可判断单调区间.(2)当时,.代入函数解析式放缩为,代入证明的不等式可化为,构造函数,并求得,由函数单调性及零点存在定理可知存在唯一的,使得成立,因而求得函数的最小值,由对数式变形化简可证明,即成立,原不等式得证.【详解】(1)函数可求得,则解得所以,定义域为,在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《周恩来行政管理思想》课程教学大纲
- 《公共事业管理概论》课程教学大纲
- 2024年代送小孩服务合同范本
- 2024年承揽彩钢工程合同范本
- 培训团队意识
- 严重骨盆骨折治疗策略
- 安徽省滁州市全椒县2024-2025学年度八年级上学期期中考试物理试卷(含答案)
- 小学三年级有趣的实验作文(20篇)
- 中学生广播员培训
- 2024建设工程施工转包合同范本
- 2024-2030年中国食品安全行业运营模式及发展战略规划分析报告
- 基于核心素养长链条培养的小学科学与初中物理的衔接研究
- 《新媒体视角下古镇旅游营销策略探究:以苏州同里古镇为例》开题报告4100字
- 诺如病毒的护理查房
- 2024年高考真题-文综政治(全国甲卷) 含解析
- 七年级数学期中模拟卷【测试范围:七上第1-3章】(冀教版2024)
- 建筑物拆除人员安全教育考核试卷
- 《智能网联汽车智能传感器测试与装调》电子教案
- 关注合规经营的年度措施计划
- 智能财务管理利用人工智能进行企业财务管理考核试卷
- 六年级作文指导省公开课获奖课件说课比赛一等奖课件
评论
0/150
提交评论