版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2.1向量加法运算及其几何意义教学目标重点:通过经历向量加法的探究,掌握向量加法概念,结合物理学实际理解向量加法的意义.能熟练地掌握向量加法的平行四边形法则和三角形法则,并能作出已知两向量的和向量.难点:对向量加法法则概念的理解、利用向量加法的几何意义解决平面几何问题.知识点:向量的加法、向量加法的三角形和平行四边形法则、向量加法运算律.能力点:能掌握向量加法运算及其几何意义;能利用向量运算解决一些简单的数学问题;通过经历向量加减法概念、法则的建构过程,感受和体会将实际问题抽象为数学概念的思想方法,增强数学的应用意识,培养学生发现问题、分析问题、解决问题的能力.教育点:让学生亲身经历运用数学概念来描述和刻画现实世界的过程,体验探索的乐趣,激发学生的学习热情;在探究和解决问题的过程中,培养学生细心观察、勇于探索、互相合作的精神.自主探究点:通过位移与力的合成,探究向量的加法法则,类比数的加法运算律探究发现向量加法运算律.考试点:向量加法运算及其几何意义,利用向量加法的几何意义解决一些简单数学问题.易错易混点:向量运算法则的正确选择和灵活应用;利用向量运算的几何意义解决平面几何问题.拓展点:利用向量解决平面几何问题和实际问题.教具准备多媒体课件、三角板课堂模式学案导学一、引入新课1.知识回顾:问题1:向量的定义及表示方法?问题2:平行向量、相等向量的概念?【师生活动】教师展示课件、提出问题,学生思考并回答问题.【设计意图】使学生对本节课所必备的基础知识有一个清晰准确的认识,分散教学难点,更为学生自主探究铺平道路.师:我们知道,数可以进行运算,有了运算而使数的威力无穷;那么,类比数的运算,向量是否也能进行运算?都有哪些运算呢?生:思考交流,提出猜想.【设计意图】恰当的点拨启发,使学生通过类比联想主动、快速的探索向量的运算.在开课之初就让学生明确本节课所要研究的内容,让学生带着问题去学习,引发学生探究新知识的欲望.2.导入新课思路1.(复习导入)上一节,我们一起学习了向量的有关概念,明确了向量的表示方法,了解了零向量、单位向量、平行向量、相等向量等概念,并接触了这些概念的辨析判断.另外,向量和我们熟悉的数一样也可以进行加减运算,这一节,我们先学习向量的加法.思路2.(问题导入)2023年大陆和台湾没有直航,因此春节探亲,要先从台北到香港,再从香港到上海,这两次位移之和是什么?怎样列出数学式子?由此导入新课.情境1:位移的合成【师生活动】教师展示课件,学生观看课件;师提出问题,生思考回答.上海上海香港台北师:在运动的过程中,飞机从最初的位置到达最终的位置都经历了几次位移?生:飞机从最初的位置到达最终的位置都经历了两次位移.师:如果从作用效果角度来看,这两次位移的作用效果是什么?生:两次位移的作用效果都等于从起点到终点的一次位移.师:在物理上,我们就把从起点到终点的位移称作是两次位移的和.师:位移求和问题在作图时,两次位移的位置关系是什么?如何作出它们的和位移?和位移的方向呢?生:第一次位移的终点是第二次位移的起点(师补充:从位置关系上看两次位移是首尾相连的),和位移是由第一次位移的起点指向第二次位移的终点.师:请位移是个物理量,如果抛开它的物理属性,正是我们所研究的——向量.那么,位移的和就可以看作是两个向量的和;也就是说既有大小,又有方向的两个向量可以相加.【设计意图】求位移是学生在物理学习中经常遇到的问题,问题的提出可以激发学生的学习兴趣,同时体现向量的应用价值,通过学生所熟悉的位移和的求法,使学生初步意识到进一步明确本节课的探索目标,使得教学过程自然流畅.情境2:位移的合成【师生活动】教师出示课件、提出问题;学生思考、小组探究.师:除了位移的合成,我们还学习了哪些向量(矢量)相加的问题?生:思考回答——速度、加速度、力的合成问题.师:好,下面我们就再一次探究一下力的合成问题.(出示课件)力与力,有怎样的关系?生:思考回答,力产生的效果与力,共同作用产生的效果相同.师:你能做出两个力,的合力吗?请用语言叙述.生:思考交流,得出答案:力的合成符合平行四边形法则,合力在以,为邻边的平行四边形的对角线上,并且大小等于平行四边形对角线的长.【设计意图】,【设计说明】由教师提问,学生分析讨论,层层深入地进入课题的探究,让学生在自主合作探究中理解重难点.二、探究新知探究1:向量加法的三角形法则【师生活动】师提出问题;生思考、小组探究、代表汇报.师:通过前面实例的探究,我们知道向量可以相加,受到位移求和的启发,能否找到向量求和的方法吗?展示问题:如图所示,类比位移的合成,作出两个非零向量与的和.生:通过思考、小组交流,得出小组成果.师:巡视课堂,关注学生的解答过程,及时解决学生解答过程中遇到的困难和出现的问题.师:(向量加法的三角形法则).已知非零向量与,在平面内任取一点,作,,则向量叫做与的和,记作:.即:=+=.求两个向量和运算,叫作向量的加法.这种求向量和的方法,称为向量加法的三角形法则.生:.师:向量加法的三角形法则有哪些认识?留给你印象最深的是什么?生:思考交流后回答:两个向量要首尾相连,才能用三角形法则求和;和向量要由第一个向量的起点直线第二个向量的终点.师生共同总结要点:“首尾相接,首尾连”.【设计意图】通过动手操作让学生进行独立的探究学习,培养学生动手实践能力;动画演示使学生更直观的感知向量加法的三角形法则,加深印象,掌握向量的几何作图技能,规范作图.探究2:向量加法的平行四边形法则【师生活动】师:求作出向量与的和,你还有其他方法吗?生:通过思考、小组交流,得出小组成果,学生上台展示探究成果.师:动画演示(向量加法的平行四边形法则).在平面内任取一点,作,,以,为邻边作,则以为起点的对角线就是与的和,记作:,=+=.这种作两个向量和的方法叫做向量加法的平行四边形法则.向量加法的平行四边形法则有求和?生:两个向量要有“相同的起点”.师:向量加法的平行四边形法则和三角形法则有什么联系?本质上是一致的吗?生:思考回答.【设计意图】由向量加法平行四边形法则的图形探究思考三角形法则,可以很清楚地使学生从几何意义上认识到两个法则之间的密切联系,理解它们的实质,而且衔接自然,能够使学生对比地得出两个法则的特点与实质,并对两个法则的特点有较深刻的印象.探究3:向量加法运算律【师生活动】师:数的运算与运算律紧密联系,运算律可以有效化简运算,实数的加法运算满足交换律和结合律,类似的,向量的加法是否也有运算律,有哪些运算律呢?师:引导学生完成下列表格.实数的加法向量的加法运算律向量加法的交换律:向量加法的结合律:生:独立思考,完成表格.【设计意图】.【设计说明】要由向量加法的结合律使学生明白,三角形法则也适用于任意多个向量相加.理解新知1.引导学生完成下列表格:ABABCED加法平行四边形法则图形表示语言表述已知非零向量与,在平面内任取一点,作,,则=在平面内任取一点,作,,以,为邻边作,则=.特点首尾相接,首尾连相同起点【设计意图】利用表格直观记忆所学知识,加深认识与理解,为准确地运用新知作必要的铺垫.2.完成下列问题:(1);(2);(4);(5).【设计意图】巩固新知,加深对向量加、减法运算法则的理解;在训练向量加法三角形法则的同时,使同学们注意到三角形法则可以推广到个向量相加的形式.即:.四、运用新知例1如图,已知两个不共线的向量、,求作向量.师:你有几种方法解决例1的问题吗?生:分析求、的和向量的方法,并独立利用不同的方法进行解题,并由两名学生分别板书三角形法则和平行四边形法则.教:巡视课堂,关注学生的解答过程,进行个别指导.最后课件展示两种作图方法的详细步骤,学生校对答案,并反思总结.【设计意图】校对答案,题后反思,可以加深学生对知识的理解,构建自己的解题思维过程.解:方法一:在平面内任取一点,作,,.方法二:在平面内任取一点,作,,以,为邻边作,连接,则.【设计意图】直接应用,内化新知,提高学生分析问题、解决问题的能力.通过本例让学生体会用两种方法作图的联系与区别,并注意应用三角形法则作图要求首尾相连,用平行四边形法则作图要求起点相同,使学生熟悉求两个向量和向量的基本步骤.思考1:若两个向量、共线,如何求向量.师:展示课件,提出问题.生:思考作图.(1)当、同向时,在平面内任取一点,作,,则;(2)当、反向时,同理可得:师:对于方向相同的两个向量相加,向量加法的三角形法则和平行四边形法则还适用吗?(引导学生从作图方法上进行分析)生:平行四边形法则不成立,三角形法则仍然适用.师:类比异号两数相加,通过向量加法的三角形法则得出方向相反的两个向量的和向量.师生总结:两个不共线的向量相加,可采用平行四边形法则或三角形法则;两个共线向量相加只能采用三角形法则,即:三角形法则适用于任意两个向量相加.师:对于零向量与任一向量,等于什么呢?生:思考,容易得出结论:.师:引导学生利用向量加法法则,从加法的几何意义说明结论的合理性.【设计意图】通过对共线向量加法的探讨,拓宽了学生对三角形法则的认识,使得不同位置的向量相加都有了依据;采用类比的方法,使学生对共线向量的加法,尤其是方向相反的两个向量的加法更容易,便于化解难点.思考2:结合图形观察分析,向量的模与、的模有怎样的关系?师:引导学生结合图形进行探究.生:思考、小组讨论,得出数学结论.(1)当与共线且同向时,;(2)当与共线且反向时,;(3)当与不共线时,.【设计意图】点评:要善于运用向量的加法的运算法则及运算律来求和向量.例2长江两岸之间没有大桥的地方,常常通过轮渡进行运输.如图所示,一艘船从长江南岸点出发,以的速度向垂直于对岸的方向行驶,同时江水的速度为向东.(1)试用向量表示江水速度、船速以及船实际航行的速度;(2)求船实际航行的速度大小(保留两位有效数字)与方向(用与江水速度间的夹角表示,精确到度).分析:这是一个速度合成问题,把船的速度、水流速度看成两个向量,这两个向量的和就是小船的实际速度,且三个向量构成一个直角三角形,已知船的速度、水流速度,就可算出船实际航行的速度.【师生活动】活动:本例结合一个实际问题说明向量加法在实际生活中的应用.这样的问题在物理中已有涉及,这里是要学生能把它抽象为向量的加法运算,体会其中应解决的问题是向量模的大小及向量的方向(与某一方向所成角的大小).引导点拨学生正确理解题意,将实际问题反映在向量作图上,从而与初中学过的解直角三角形建立联系.师:你能把这个实际问题抽象为向量问题吗?生:思考,正确理解题意,将实际问题反映成向量,并作图完成例题.师展示课件,师生共同校对答案.解:(1)表示船速,表示水速,以、为邻边作,则表示船实际航行的速度.(2)在中,,,所以.因为,所以.答:船实际航行速度的大小为,方向与水的流速间的夹角约为.【设计意图】点评:用向量法解决物理问题的步骤为:先用向量表示物理量,再进行向量运算,最后回扣物理问题,解决问题.【设计意图】让学生亲自动手操作,引导学生注意规范操作,为以后解题打下良好基础;变式训练用向量方法证明对角线互相平分的四边形是平行四边形.图12活动:本题是一道平面几何题,如果用纯几何的方法去思考,问题不难解决,如果用向量法来解,不仅思路清晰,而且运算简单.将互相平分利用向量表达,以此为条件推证使四边形为平行四边形的向量等式成立.教师引导学生探究怎样用向量法解决几何问题,并在解完后总结思路方法.证明:如图12,设四边形ABCD的对角线AC、BD相交于点O,=+,=+.AC与BD互相平分,=,=,=,因此∥且||=||,即四边形ABCD是平行四边形.点评:证明一个四边形是平行四边形时,只需证明=或=即可.而要证明一个四边形是梯形,需证明与共线,且||≠||.五、课堂小结1.先由学生回顾本节学习的数学知识:向量的加法定义,向量加法的三角形法则和平行四边形法则,向量加法满足交换律和结合律,几何作图,向量加法的实际应用.2.教师与学生一起总结本节学习的数学方法:特殊与一般,归纳与类比,数形结合,分类讨论,特别是通过知识迁移类比获得新知识的过程与方法.这种迁移类比的方法将把我们引向数学的王国,科学的殿堂.教师提问:通过本节课的学习,你有哪些收获?留给你印象最深的是什么?(引导学生从知识点、思想方法两方面进行总结)学生总结:1.知识点:向量加法的三角形法则;向量加法的平行四边形法则;向量加法的运算律;相反向量;2.思想:归纳类比、数形结合、分类讨论等思想方法.教师展示课件并强调:1.向量加法的三角形法则要注意两个向量“首尾相连”;2.向量加法的平行四边形法则要注意两个向量“同起点”;【设计意图】让学生通过小结,反思学习过程,提升对所学知识及数学思想方法的理解和应用意识;提高学生的概括、归纳能力.同时学生在回顾、总结、反思的过程中,将知识条理化、系统化,使认知结构更趋合理;最后教师用课件展示小结内容并进行重点强调,使学生印象深刻.为了鼓励学生的个性发展,在课堂小结部分设置一个开放性问题,期望通过这个问题使学生体验学习数学的快乐,增强学习数学的信心.六、布置作业1.书面作业(课下投影)如图16所示,已知矩形ABCD中,||=4,设=a,=b,=c,试求向量a+b+c的模.图16解:过D作AC的平行线,交BC的延长线于E,∴DE∥AC,AD∥BE.∴四边形ADEC为平行四边形.∴=,=.于是a+b+c=++=+==+=2,∴|a+b+c|=2||=8.点评:求若干个向量的和的模(或最值)的问题通常按下列步骤进行:(1)寻找或构造平行四边形,找出所求向量的关系式;(2)用已知长度的向量表示待求向量的模,有时还要利用模的重要性质.必做题:3,4.2.课外思考思考1:是内一点,且,判断是的什么心?思考2:三人夺球游戏的规则:在小球上均匀装上三条绳子,由三人在一水平面分别拉绳,要求每两人与球连接夹角相等,得到小球者为胜.现有甲、乙、丙三人玩此游戏,若甲、乙两人的力量相同,均为,则丙需要多少力量才能使小球静止?若甲、乙两人的力量不等,小球有可能静止吗?[设计意图]通过适量的课后作业,复习巩固所学知识,并使.书面作业的布置,设置了两组练习,一组必做题,一组选做题,这样可以使学生在完成基本学习任务的同时,又能得到符合自身实
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年片石石材出口与进口代理服务合同2篇
- 2024年生态农业病虫害防治与农产品溯源服务合同3篇
- 2024年标准包工包料建筑协议模板版B版
- 2024年度高清影视作品无偿借用授权协议3篇
- 2024年版区块链供应链管理平台技术授权合同
- 北京市西城区2021届高三二模生物试题
- 2024年新能源储能技术研发合同范本3篇
- 校园欺课程设计
- 2024年第73讲借款合同企业间借贷合同3篇
- 篮球家庭训练课程设计
- 2024年河北交通投资集团有限公司招聘笔试参考题库附带答案详解
- 大学生劳动教育-南京大学2中国大学mooc课后章节答案期末考试题库2023年
- 福利住房与购房补贴制度
- 中国民族民间器乐 课件-2023-2024学年高中音乐湘教版(2019)必修音乐鉴赏
- 工厂筹建方案
- 长沙民政职业技术学院单招《语文》考试参考题库(含答案)
- UPVC管道安装施工方法
- 眶尖综合征的护理查房
- 计算机基础理论-进制的概念及换算试题及答案
- 森林草原防火工作培训课件
- 2023年妇科门诊总结及计划
评论
0/150
提交评论